首页> 外文期刊>Intelligent automation and soft computing >QRDPSO: A new optimization method for swarm robot searching and obstacle avoidance in dynamic environments
【24h】

QRDPSO: A new optimization method for swarm robot searching and obstacle avoidance in dynamic environments

机译:QRDPSO:动态环境中的群体机器人搜索和避障的新优化方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we show how the quantum-based particle swami optimization (QPSO) method is adopted to derive a new derivation for robotics application in search and rescue simulations. The new derivation, called the Quantum Robot Darwinian PSO (QRDPSO) is inspired from another PSO-based algorithm, the Robot Darwinian PSO (RDPSO). This paper includes comprehensive details on the QRDPSO formulation and parameters control which show how the swami overcomes communication constraints to avoid obstacles and achieve optimal solution. The results show the QRDPSO is an upgrade over RDPSO n terms of convergence speed, trajectory control, obstacle avoidance and connectivity performance of the swarm.
机译:在本文中,我们展示了如何采用量子的粒子SWAMI优化(QPSO)方法来搜索和救援模拟中的机器人应用程序的新推导。新的推导,称为量子机器人达尔文PSO(QRDPSO)的启发来自另一个基于PSO的算法,机器人达尔文PSO(RDPSO)。本文包括QRDPSO配方和参数控制的全面细节,展示了Swami如何克服通信约束以避免障碍物,实现最佳解决方案。结果表明,QRDPSO是通过RDPSON升级的升级速度,轨迹控制,避免避免和群体的连接性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号