首页> 外文期刊>Intelligent automation and soft computing >Development of a Data-Driven ANFIS Model by Using PSO-LSE Method for Nonlinear System Identification
【24h】

Development of a Data-Driven ANFIS Model by Using PSO-LSE Method for Nonlinear System Identification

机译:基于PSO-LSE方法的数据驱动ANFIS模型的非线性系统辨识

获取原文
获取原文并翻译 | 示例

摘要

In this study, a systematic data-driven adaptive neuro-fuzzy inference system (ANFIS) modelling methodology is proposed. The new methodology employs an unsupervised competitive learning scheme to build an initial ANFIS structure from input-output data, and a high-performance PSO-LSE method is developed to improve the structure and to identify the consequent parameters of ANFIS model. This proposed modelling approach is evaluated using several nonlinear systems and is shown to outperform other modelling approaches. The experimental results demonstrate that our proposed approach is able to find the most suitable architecture with better results compared with other methods from the literature.
机译:在这项研究中,提出了一种系统的数据驱动的自适应神经模糊推理系统(ANFIS)建模方法。该新方法采用无监督竞争学习方案,根据输入-输出数据构建初始ANFIS结构,并开发了一种高性能PSO-LSE方法来改进结构并识别ANFIS模型的后续参数。该拟议的建模方法是使用几种非线性系统进行评估的,其性能优于其他建模方法。实验结果表明,与文献中的其他方法相比,我们提出的方法能够找到最合适的架构,并且效果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号