首页> 外文期刊>Integration >Method for designing two levels RNS reverse converters for large dynamic ranges
【24h】

Method for designing two levels RNS reverse converters for large dynamic ranges

机译:用于大动态范围的两级RNS反向转换器的设计方法

获取原文
获取原文并翻译 | 示例

摘要

In the last years, research on Residue Number Systems (RNS) has targeted larger dynamic ranges in order to further explore their inherent parallelism. In this paper, we start from the traditional 3-moduli set {2(n), 2(n)-1, 2(n)+1}, with an equivalent 3n-bit dynamic range, and propose horizontal and vertical extensions to scale the dynamic range and enhance the parallelism according to the requirements. Two different methods to design general reverse converters for extended moduli sets to the desired dynamic ranges are introduced. Previous converters require complex weight selection of the inputs or complex final conversion steps. In this work the weight selection of the multiplicative terms associated to the inputs is reduced to additions of 2n-bit length and the final conversion step requires only one comparison. Experimental results suggest that the proposed approaches achieve significant area reductions, up to 61% lower area reductions, in comparison with the state-of-the-art for generic DR purposes. Despite having identical delay metrics as the existing generic state of the art, Area-Delay-Product efficiency metrics improvements up to 2.7 times can be achieved. The obtained results also validate the improved scalability of the proposed approaches, allowing for better results with the increase of n and the DR. (C) 2016 Elsevier B.V. All rights reserved.
机译:近年来,对残数系统(RNS)的研究针对更大的动态范围,以进一步探索其固有的并行性。在本文中,我们从具有等效3n位动态范围的传统3模集{2(n),2(n)-1,2(n)+1}开始,并提出了水平和垂直扩展根据要求扩展动态范围并增强并行度。引入了两种不同的方法来设计用于将模数集扩展到所需动态范围的通用反向转换器。先前的转换器需要复杂的输入权重选择或复杂的最终转换步骤。在这项工作中,将与输入关联的乘法项的权重选择减少为2n位长度的加法,并且最终转换步骤仅需要一个比较。实验结果表明,与用于通用灾难恢复目的的最新技术相比,该方法可显着减少面积,最多可减少61%的面积。尽管具有与现有的现有技术相同的延迟指标,但面积延迟产品效率指标却可以提高多达2.7倍。获得的结果还验证了所提出方法的改进的可伸缩性,从而随着n和DR的增加获得更好的结果。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号