首页> 外文期刊>Integral Equations and Operator Theory >Weighted Bergman Spaces: Shift-Invariant Subspaces and Input/State/Output Linear Systems
【24h】

Weighted Bergman Spaces: Shift-Invariant Subspaces and Input/State/Output Linear Systems

机译:加权Bergman空间:不变位移子空间和输入/状态/输出线性系统

获取原文

摘要

It is well known that subspaces of the Hardy space over the unit disk which are invariant under the backward shift occur as the image of an observability operator associated with a discrete-time linear system with stable state-dynamics, as well as the functional-model space for a Hilbert space contraction operator, while forward shift-invariant subspaces have a representation in terms of an inner function. We discuss several variants of these statements in the context of weighted Bergman spaces on the unit disk.
机译:众所周知,单位磁盘上的Hardy空间的子空间在向后移位下是不变的,它的出现是与具有稳定状态动力学的离散时间线性系统以及功能模型相关的可观察性算子的图像希尔伯特空间收缩算子的空间,而前移不变子空间具有内部函数的表示形式。我们在单位磁盘上的加权Bergman空间的上下文中讨论这些语句的几种变体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号