首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Automatic Target Tracking in FLIR Image Sequences Using Intensity Variation Function and Template Modeling
【24h】

Automatic Target Tracking in FLIR Image Sequences Using Intensity Variation Function and Template Modeling

机译:使用强度变化函数和模板建模的FLIR图像序列中的自动目标跟踪

获取原文
获取原文并翻译 | 示例

摘要

A novel automatic target tracking (ATT) algorithm for tracking targets in forward-looking infrared (FLIR) image sequences is proposed in this paper. The proposed algorithm efficiently utilizes the target intensity feature, surrounding background, and shape information for tracking purposes. This algorithm involves the selection of a suitable subframe and a target window based on the intensity and shape of the known reference target. The subframe size is determined from the region of interest and is constrained by target size, target motion, and camera movement. Then, an intensity variation function (IVF) is developed to model the target intensity profile. The IVF model generates the maximum peak value where the reference target intensity variation is similar to the candidate target intensity variation. In the proposed algorithm, a control module has been incorporated to evaluate IVF results and to detect a false alarm (missed target). Upon detecting a false alarm, the controller triggers another algorithm, called template model (TM), which is based on the shape knowledge of the reference target. By evaluating the outputs from the IVF and TM techniques, the tracker determines the real coordinates of one or more targets. The proposed technique also alleviates the detrimental effects of camera motion, by appropriately adjusting the subframe size. Experimental results using real-life long-wave and medium-wave infrared image sequences are shown to validate the robustness of the proposed technique.
机译:提出了一种新颖的自动目标跟踪(ATT)算法,用于跟踪前视红外(FLIR)图像序列中的目标。所提出的算法有效地利用了目标强度特征,周围背景和形状信息来进行跟踪。该算法涉及基于已知参考目标的强度和形状来选择合适的子帧和目标窗口。子帧大小是根据感兴趣区域确定的,并受目标大小,目标运动和摄像机移动的约束。然后,开发强度变化函数(IVF)以对目标强度分布进行建模。 IVF模型会生成最大峰值,其中参考目标强度变化与候选目标强度变化相似。在提出的算法中,控制模块已被纳入评估IVF结果并检测错误警报(丢失目标)。在检测到错误警报时,控制器会触发另一种算法,称为模板模型(TM),该算法基于参考目标的形状知识。通过评估IVF和TM技术的输出,跟踪器可以确定一个或多个目标的真实坐标。所提出的技术还通过适当地调整子帧大小来减轻照相机运动的有害影响。实验结果表明,使用现实生活中的长波和中波红外图像序列可以验证所提出技术的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号