首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Prognostics of Lithium-Ion Batteries Based on the Verhulst Model, Particle Swarm Optimization and Particle Filter
【24h】

Prognostics of Lithium-Ion Batteries Based on the Verhulst Model, Particle Swarm Optimization and Particle Filter

机译:基于Verhulst模型,粒子群优化和粒子滤波的锂离子电池预测

获取原文
获取原文并翻译 | 示例

摘要

A novel data-driven prognostic approach for lithium-ion batteries remaining useful life (RUL) based on the Verhulst model, particle swarm optimization (PSO) and particle filter (PF) is proposed. First, the Verhulst model based on the capacity fade trends of lithium-ion batteries is proposed, which is used as the fitting model and predicting model, respectively. Second, the PSO is applied to improve the fitting model. Third, the improved fitting model combined with the Euclidean distance is employed to determine the upper and lower bounds of the predicting model parameters. Fourth, to estimate the predicting model, the PSO is exploited based on the upper and lower bounds of parameters. Then, to compensate the prediction error, the PF is used to update the predicting model. Finally, the RUL prediction can be made by extrapolating the updated predicting model to the acceptable performance threshold. Four case studies are conducted to validate the proposed approach. The experimental results show the following: 1) the proposed prognostic approach has high prediction accuracy and 2) the proposed model needs fewer parameters than the traditional empirical models.
机译:提出了一种基于Verhulst模型,粒子群优化(PSO)和粒子滤波(PF)的锂离子电池剩余使用寿命(RUL)的数据驱动的预测方法。首先,提出了基于锂离子电池容量衰减趋势的Verhulst模型,分别用作拟合模型和预测模型。其次,应用PSO改进拟合模型。第三,结合欧氏距离的改进拟合模型确定预测模型参数的上下限。第四,为了估计预测模型,基于参数的上下限来利用PSO。然后,为了补偿预测误差,PF用于更新预测模型。最后,可以通过将更新的预测模型外推到可接受的性能阈值来进行RUL预测。进行了四个案例研究,以验证所提出的方法。实验结果表明:1)所提出的预测方法具有较高的预测准确性; 2)所提出的模型与传统经验模型相比所需的参数更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号