...
首页> 外文期刊>Quality Control and Applied Statistics >Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter
【24h】

Remaining useful life prediction for lithium-ion batteries using a quantum particle swarm optimization-based particle filter

机译:使用量子粒子群优化粒子过滤器剩余对锂离子电池的使用寿命预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lithium ion batteries are commonly used in portable electronics, spacecraft and electric vehicles due to many relative advantages. As a critical component, its performance is crucial to reliability of the whole system. An accurate prediction of battery life is important to avoid system breakdown. The health status of a lithium ion battery is usually called state-of-health (STH) which depends on the battery's charge capacity which degrades over time. When the charge capacity reaches a threshold value, the battery is considered failed. When STH can be accurately predicted, major breakdowns can be averted. Two types of approaches are available for STH prediction for lithium ion batteries: model- based and data-driven. Model-based approaches use the degradation model to describe the physical nature of degradation. The data-driven approach uses large degradation data to determine the degradation mechanism. The recurrent neural network and autoregressive moving average model are two data driven models used for predicting remaining useful life (RUL) of lithium ion batteries. Liu et al. (Ref. 1) developed a fusion prognostic framework based on the autoregressive model and regularized particle filter (RPF) algorithm to improve RUL prediction. The particle filter (PF) is better in dealing with nonlinear and non-Gaussian systems, however has a major drawback of a particle impoverish problem. The particle swarm optimization algorithm (PSO) improves performance of PF-based approaches, but requires a large amount of computation. A new algorithm called the quantum-behaved particle swarm optimization algorithm (QPSO) performs well and does not need too much computation. QPSO enables the particles to move to optimum regions with a better capacity of searching the global optimum and faster convergence, plus fewer particles and parameters are needed for this application.
机译:锂离子电池通常用于便携式电子设备,航天器和电动车辆由于许多相对的优势。作为关键组成部分,其性能对整个系统的可靠性至关重要。精确预测电池寿命对于避免系统分解非常重要。锂离子电池的健康状况通常被称为健康状态(STH),这取决于电池随着时间的推移降低的电池充电容量。当充电容量达到阈值时,电池被认为失败。当STH可以准确预测时,可以避免重大故障。两种类型的方法可用于锂离子电池的STH预测:基于模型和数据驱动。基于模型的方法使用劣化模型来描述劣化的物理性质。数据驱动方法使用大的劣化数据来确定劣化机制。复发性神经网络和自动增加移动平均模型是用于预测锂离子电池的剩余使用寿命(RUL)的两个数据驱动模型。刘等人。 (参考文献1)基于自回归模型和正则化粒子滤波器(RPF)算法开发了一种融合预后框架,以改善ruL预测。粒子过滤器(PF)在处理非线性和非高斯系统方面更好,但是具有粒子贫困问题的主要缺点。粒子群优化算法(PSO)提高了基于PF的方法的性能,但需要大量计算。一种新的算法,称为量子表现粒子群优化算法(QPSO)执行良好,不需要太多计算。 QPSO使粒子能够移动到具有更好的容量搜索全局最佳和更快的收敛性的最佳区域,并且此应用程序需要更少的粒子和参数。

著录项

  • 来源
  • 作者单位

    School of Automation Science and Electrical Engineering Beihang University Beijing China;

    School of Automation Science and Electrical Engineering Beihang University Beijing China;

    School of Automation Science and Electrical Engineering Beihang University Beijing China;

    School of Automation Science and Electrical Engineering Beihang University Beijing China;

    School of Automation Science and Electrical Engineering Beihang University Beijing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 概率论、数理统计的应用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号