首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Robust Incipient Fault Detection of Complex Systems Using Data Fusion
【24h】

Robust Incipient Fault Detection of Complex Systems Using Data Fusion

机译:使用数据融合的复杂系统的强大初始故障检测

获取原文
获取原文并翻译 | 示例

摘要

An incipient fault refers to the first change point when a system starts to deteriorate. Early detections of incipient faults are crucial to the safety, reliability, and effective predictive maintenance of complex engineering systems. However, it is very difficult to detect incipient faults at the initial stage of the system-degradation processes. To address this issue, an innovative data-fusion method is introduced to detect the incipient faults by integrating data collected from multiple sources instead of a single data source. The data-fusion problem is formulated as a convex optimization problem, aiming at reducing the false-alarm rate and the time to detect incipient faults. We demonstrate the proposed data-fusion method using a data set generated by the degraded aircraft engines. The numerical results have demonstrated that the proposed method can assist in reducing both the false-alarm rate and the time to detect incipient faults.
机译:当系统开始恶化时,初始故障是指第一个改变点。早期检测初始故障对复杂工程系统的安全性,可靠性和有效预测维护至关重要。但是,很难在系统降级过程的初始阶段检测初始故障。为了解决这个问题,引入了一种创新的数据融合方法,通过集成从多个来源收集而不是单个数据源收集的数据来检测初始故障。将数据融合问题标准为凸优化问题,旨在降低错误报警速率以及检测初始故障的时间。我们使用DRADed飞机发动机产生的数据集展示了所提出的数据融合方法。数值结果表明,所提出的方法可以帮助减少错误报警速率和检测初始故障的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号