首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning
【24h】

Optimizing Electrode Positions in 2-D Electrical Impedance Tomography Using Deep Learning

机译:利用深度学习优化2-D电阻抗断层扫描中的电极位置

获取原文
获取原文并翻译 | 示例

摘要

Electrical impedance tomography (EIT) is a powerful tool for nondestructive evaluation, state estimation, and process tomography, among numerous other use cases. For these applications, and in order to reliably reconstruct images of a given process using EIT, we must obtain high-quality voltage measurements from the target of interest. As such, it is obvious that the locations of electrodes used for measuring play a key role in this task. Yet, to date, methods for optimally placing electrodes either require knowledge on the EIT target (which is, in practice, never fully known) or are computationally difficult to implement numerically. In this article, we circumvent these challenges and present a straightforward deep learning-based approach for optimizing electrodes positions. It is found that the optimized electrode positions outperformed “standard” uniformly distributed electrode layouts in all test cases. Furthermore, it is found that the use of optimized electrode positions computed using the approach derived herein can reduce errors in EIT reconstructions as well as improve the distinguishability of EIT measurements.
机译:电阻抗断层扫描(EIT)是一种强大的非破坏性评估,状态估计和过程断层扫描的强大工具,在许多其他用例中。对于这些应用,并且为了使用EIT可靠地重建给定过程的图像,必须从感兴趣的目标获得高质量的电压测量。因此,很明显,用于测量的电极的位置在这项任务中发挥着关键作用。然而,迄今为止,最佳地放置电极的方法需要在EIT目标上(实际上,从未完全知道)或者在数值上进行计算难以实现。在本文中,我们规避了这些挑战,并呈现了一种用于优化电极位置的直接基于深度学习的方法。发现所有测试用例中的优化电极位置优化的电极位置优于“标准”均匀分布的电极布局。此外,发现使用使用本文得出的方法计算的优化电极位置可以减少EIT重建中的误差以及提高EIT测量的可区分性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号