首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Right-cyclic Hadamard coding schemes and fast Fourier transforms for use in computing spectrum estimates in Hadamard-transform spectrometry
【24h】

Right-cyclic Hadamard coding schemes and fast Fourier transforms for use in computing spectrum estimates in Hadamard-transform spectrometry

机译:右循环Hadamard编码方案和快速傅里叶变换,用于计算Hadamard变换光谱法中的频谱估计

获取原文
获取原文并翻译 | 示例

摘要

Two computationally efficient spectrum-recovery schemes were recently developed for use by Hadamard-transform spectrometers that have static and dynamic nonidealities in their encoding masks. These methods make use of a left-cyclic Hadamard encodement scheme and the ability to express the left-cyclic W/sub D/ matrix in factored form as W/sub D/=ST/sub D/. The matrix W/sub D/ describes the dynamic characteristics of and the encodement scheme for the mask. This paper focuses on the use of a right-cyclic Hadamard pattern to encode the mask and computationally efficient methods that can be used to obtain the spectrum-estimate. The major advantage of right-cyclic over left-cyclic encodement schemes is due to the resulting right-cyclic nature of both W/sub D/ and W/sub D//sup -1/. Fast algorithms, such as a fast Fourier transform (FFT) or a Trench algorithm, that take advantage of the right-cyclic nature of W/sub D/ can be used to obtain W/sub D//sup -1/ directly. In general, the number of mask elements is not an integer power of two, and non-radix-2 FFT's must be used to compute W/sub D//sup -1/. Since W/sub D//sup -1/ is right-cyclic, the vector-matrix product of W/sub D//sup -1/ and the measurement vector can be expressed as a circular correlation and implemented indirectly via FFT's. With appropriate zero-padding of the vectors, radix-2 FFT's can be used for this computation. Various algorithms were used at each step in the overall computation of the spectrum-estimate, and the total computation times are presented and compared. The size of the mask is important in determining which algorithms are the most efficient in recovering the spectrum-estimate.
机译:最近开发了两种计算有效的频谱恢复方案,供Hadamard变换光谱仪使用,它们的编码掩码具有静态和动态非理想性。这些方法利用左循环Hadamard编码方案,并具有将分解后的左循环W / sub D /矩阵表示为W / sub D / = ST / sub D /的能力。矩阵W / sub D /描述了掩码的动态特性和编码方案。本文着重介绍了使用右循环Hadamard模式对掩码进行编码以及可用于获得频谱估计的高效计算方法。右循环优于左循环编码方案的主要优点是由于W / sub D /和W / sub D // sup -1的右循环性质。利用W / sub D /的右循环特性的快速算法,例如快速傅里叶变换(FFT)或Trench算法,可用于直接获得W / sub D // sup -1 /。通常,掩码元素的数量不是2的整数次幂,必须使用非基数2的FFT来计算W / sub D // sup -1 /。由于W / sub D // sup -1 /是右循环的,因此W / sub D // sup -1 /的矢量矩阵乘积和测量矢量可以表示为循环相关,并可以通过FFT间接实现。通过对向量进行适当的零填充,可以将基数为2的FFT用于此计算。在频谱估算的整体计算中的每一步都使用了各种算法,并给出了总的计算时间并进行了比较。掩模的大小对于确定哪种算法在恢复频谱估计中最有效非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号