首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Nonlinear Dynamic Compensation of Sensors Using Inverse-Model-Based Neural Network
【24h】

Nonlinear Dynamic Compensation of Sensors Using Inverse-Model-Based Neural Network

机译:基于逆模型神经网络的传感器非线性动态补偿

获取原文
获取原文并翻译 | 示例

摘要

Many sensors (such as low-cost sensors), in essence, display strongly nonlinear dynamic behavior that cannot be calibrated by well-developed linear dynamic compensation methods. So far, no general nonlinear dynamic compensation (NLDC) method exists, although there are some approaches based on nonlinear models (including Volterra series expansion, Wiener kernels, the Hammerstein model, and finite impulse response) that were developed to compensate some special kinds of nonlinear sensors. In this paper, we suggest a general framework for NLDC, in which removal of the influence of disturbance by using an auxiliary sensor is significantly studied and presented. The inverse model and differential-estimation-filter arrays are embedded in this general framework, where a neural network is applied to approximate the inverse mapping, and differential-filter arrays are used to estimate signal differentials up to a certain order. We also discuss the existence conditions of the general framework. The detailed design procedure of this general method is given as well. Simulation and experiments are presented to illustrate the proposed general NLDC method.
机译:本质上,许多传感器(例如低成本传感器)显示出强烈的非线性动态行为,而这些行为无法通过完善的线性动态补偿方法进行校准。到目前为止,尽管有一些基于非线性模型(包括Volterra级数展开,Wiener核,Hammerstein模型和有限冲激响应)的方法可以用来补偿某些特殊类型的非线性,但尚不存在通用的非线性动态补偿(NLDC)方法。非线性传感器。在本文中,我们提出了NLDC的通用框架,其中对使用辅助传感器消除干扰的影响进行了深入研究和提出。逆模型和差分估计滤波器阵列被嵌入此通用框架中,在该通用框架中,神经网络被应用于近似逆映射,而差分滤波器阵列被用于估计高达一定阶的信号差分。我们还将讨论通用框架的存在条件。还给出了此通用方法的详细设计过程。仿真和实验表明了提出的通用NLDC方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号