首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Neural Network Mapping and Clustering of Elastic Behavior From Tactile and Range Imaging for Virtualized Reality Applications
【24h】

Neural Network Mapping and Clustering of Elastic Behavior From Tactile and Range Imaging for Virtualized Reality Applications

机译:用于虚拟现实应用的来自触觉和距离成像的神经网络映射和弹性行为聚类

获取原文
获取原文并翻译 | 示例

摘要

To fully reach its potential, virtualized reality needs to go beyond the modeling of rigid bodies and introduce accurate representations of deformable objects. This paper explores neural networks and vision-based and tactile measurement strategies to investigate the intricate processes of acquisition and mapping of properties characterizing deformable objects. An original composite neural network framework is applied to guide the tactile probing by clustering measurements representing uniform elasticity regions and, therefore, direct sensors toward areas of elasticity transitions where higher sampling density is required. The network characterizes the relationship between surface deformation and forces that are exemplified in nonrigid bodies. Beyond serving as a planner for the acquisition of measurements, the proposed composite neural architecture allows the encoding of the complex force/deformation relationship without the need for sophisticated mathematical modeling tools. Experimental results prove the validity and the feasibility of the proposed approach.
机译:为了充分发挥其潜力,虚拟现实需要超越对刚体的建模,并引入可变形对象的精确表示。本文探索了神经网络以及基于视觉的触觉测量策略,以研究表征可变形物体的特性的获取和映射的复杂过程。应用原始的复合神经网络框架通过对表示均匀弹性区域的测量进行聚类来指导触觉探测,因此,将传感器引向需要更高采样密度的弹性过渡区域。该网络表征了非刚性物体中表面变形与力之间的关系。除了充当获取测量的计划者之外,所提出的复合神经体系结构还允许对复杂的力/变形关系进行编码,而无需复杂的数学建模工具。实验结果证明了该方法的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号