首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on Learning
【24h】

Analysis of Permanent Magnet Synchronous Motor Fault Diagnosis Based on Learning

机译:基于学习的永磁同步电动机故障诊断分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an effective diagnosis algorithm for permanent magnet synchronous motors running with an array of faults of varying severity over a wide speed range. The fault diagnosis is based on a current signature analysis. The complete fault motor diagnosis system requires the extraction of features based on the current method and a subsequent method for adding classifications. In this paper, we propose two feature extraction methods: the first involves a classification method that utilizes a wavelet packet transform and the second is a deep 1-D convolution neural network that includes a softmax layer. The experimental results obtained using real-time motor stator current data demonstrate the effectiveness of the proposed methods for real-time monitoring of motor conditions. The results also demonstrate that the proposed methods can effectively diagnose five different motor states, including two different demagnetization fault states and two bearing fault states.
机译:本文提出了一种有效的诊断算法,用于永磁同步电动机,该电动机在很宽的转速范围内会出现一系列严重程度不同的故障。故障诊断基于当前特征分析。完整的故障电机诊断系统需要基于当前方法和后续方法来提取特征,以添加分类。在本文中,我们提出了两种特征提取方法:第一种涉及利用小波包变换的分类方法,第二种是包含softmax层的深度一维卷积神经网络。使用实时电动机定子电流数据获得的实验结果证明了所提出方法用于实时监测电动机状况的有效性。结果还表明,所提出的方法可以有效地诊断五种不同的电动机状态,包括两种不同的退磁故障状态和两种轴承故障状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号