首页> 外文期刊>Neurocomputing >Diagnosis of Inter-turn Short Circuit of Permanent Magnet Synchronous Motor Based on Deep learning and Small Fault Samples
【24h】

Diagnosis of Inter-turn Short Circuit of Permanent Magnet Synchronous Motor Based on Deep learning and Small Fault Samples

机译:基于深度学习和小故障样本的永磁同步电动机匝间短路的诊断

获取原文
获取原文并翻译 | 示例

摘要

An efficient and accurate method based on a conditional generative adversarial net (CGAN) and an optimized sparse auto encoder (OSAE) is proposed to detect the inter-turn short circuit (ITSC) problem for permanent magnet synchronous motors (PMSMs). In order to achieve an accurate detection of the ITSC, the CGAN is adopted to augment the few fault samples, and a noise injection strategy is applied to enhance the generalization ability of the network in the framework of the OSAE. Specifically, we made a combination of two types of signals to create a training set that is augmented by the CGAN, and the parameters of the OSAE are determined by the training process of networks. The experimental results indicate that the proposed method for the fault diagnosis of this fault achieves high accuracy 98.9%.(c) 2021 Elsevier B.V. All rights reserved.
机译:提出了一种基于条件生成的对冲网(CGAN)和优化的稀疏自动编码器(OSAE)的高效和准确的方法,以检测永磁同步电动机(PMSMS)的转向间短路(ITSC)问题。 为了实现ITSC的准确检测,采用CGAN来增强少数故障样本,并应用噪声注入策略来提高osae框架中网络的泛化能力。 具体地,我们组合了两种类型的信号来创建由Cgan增强的训练集,并且osae的参数由网络的培训过程决定。 实验结果表明,该故障的故障诊断方法达到了高精度98.9%。(c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号