首页> 外文期刊>INFORMS journal on computing >Stochastic Decomposition for Two-Stage Stochastic Linear Programs with Random Cost Coefficients
【24h】

Stochastic Decomposition for Two-Stage Stochastic Linear Programs with Random Cost Coefficients

机译:随机成本系数的两阶段随机线性程序的随机分解

获取原文
获取原文并翻译 | 示例

摘要

Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average approximations (SAA). When compared with the solutions obtained using the SAA procedure, SD provides solutions of similar quality in far less computational time using ordinarily available computational resources. However, previous versions of SD were not applicable to problems with randomness in second-stage cost coefficients. In this paper, we extend its capabilities by relaxing this assumption on cost coefficients in the second stage. In addition to the algorithmic enhancements necessary to achieve this, we also present the details of implementing these extensions, which preserve the computational edge of SD. Finally, we illustrate the computational results obtained from the latest implementation of SD on a variety of test instances generated for problems from the literature. We compare these results with those obtained from the regularized L-shaped method applied to the SAA function of these problems with different sample sizes.
机译:随机分解(SD)是解决实际应用中出现的大规模随机编程(SP)问题的计算有效方法。通过使用增量采样,这种方法旨在为给定SP实例发现适当的样本大小,从而排除了对某种情况减少或任意样本尺寸的需要,以创建样本平均近似(SAA)。与使用SAA程序获得的解决方案相比,SD提供了使用往常可用的计算资源的较少计算时间的类似质量的解决方案。但是,先前版本的SD不适用于第二阶段成本系数中随机性的问题。在本文中,我们通过在第二阶段的成本系数上放松这种假设来扩展其能力。除了实现此目的所需的算法增强功能之外,我们还提供了实现这些扩展的详细信息,这些扩展包括保留SD的计算边缘。最后,我们说明了从SD的最新实施获得的计算结果,在文献中产生的各种测试实例。我们将这些结果与从应用于这些问题的SAA函数的正则化L形方法中获得的那些结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号