首页> 外文期刊>INFORMS journal on computing >Learning to Correlate Accounts Across Online Social Networks: An Embedding-Based Approach
【24h】

Learning to Correlate Accounts Across Online Social Networks: An Embedding-Based Approach

机译:学习在线社交网络中关联账户:基于嵌入的方法

获取原文
获取原文并翻译 | 示例

摘要

Cross-site account correlation correlates users who have multiple accounts but the same identity across online social networks (OSNs). Being able to identify cross-site users is important for a variety of applications in social networks, security, and electronic commerce, such as social link prediction and cross-domain recommendation. Because of either heterogeneous characteristics of platforms or some unobserved but intrinsic individual factors, the same individuals are likely to behave differently across OSNs, which accordingly causes many challenges for correlating accounts. Traditionally, account correlation is measured by analyzing user-generated content, such as writing style, rules of naming user accounts, or some existing metadata (e.g., account profile, account historical activities). Accounts can be correlated by de-anonymizing user behaviors, which is sometimes infeasible since such data are not often available. In this work, we propose a method, called ACCount eMbedding (ACCM), to go beyond text data and leverage semantics of network structures, a possibility that has not been well explored so far. ACCM aims to correlate accounts with high accuracy by exploiting the semantic information among accounts through random walks. It models and understands latent representations of accounts using an embedding framework similar to sequences of words in natural language models. It also learns a transformation matrix to project node representations into a common dimensional space for comparison. With evaluations on both real-world and synthetic data sets, we empirically demonstrate that ACCM provides performance improvement compared with several state-of-the-art baselines in correlating user accounts between OSNs.
机译:跨站点帐户相关性关联具有多个帐户但在线社交网络(OSN)中具有相同身份的用户。能够识别跨站点用户对社交网络,安全和电子商务的各种应用很重要,例如社交链路预测和跨域推荐。由于平台的异构特征或一些不观察到的,但内在的个性因素,同一个人可能在OSNS中表现不同,因此对相关账户产生了许多挑战。传统上,通过分析用户生成的内容,例如写样式,命名用户帐户规则或一些现有元数据(例如,帐户简介,帐户历史活动)来衡量帐户相关性。帐户可以通过De-Anymymization的用户行为相关,这有时是不可行的,因为这些数据通常不可用。在这项工作中,我们提出了一种被称为账户嵌入(ACCM)的方法,以超越文本数据并利用网络结构的语义,到目前为止还没有得到很好的探索。 ACCM旨在通过随机散步利用账户之间的语义信息来关联高精度。 IT模型和了解使用与自然语言模型中的单词序列类似的嵌入框架的潜在概念表示。它还将转换矩阵学习到将项目节点表示的转换矩阵变为共同维度空间以进行比较。通过对现实世界和合成数据集的评估,我们经验证明ACCM与几个最先进的基本线相比,在关联osn之间的用户账户中的几个最先进的基础上提供了性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号