首页> 外文期刊>INFORMS journal on computing >SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems
【24h】

SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective Problems

机译:SOCEMO:计算昂贵的多目标问题的替代优化

获取原文
获取原文并翻译 | 示例

摘要

We present the algorithm SOCEMO for optimization problems that have multiple conflicting computationally expensive black-box objective functions. The computational expense arising from the objective function evaluations considerably restricts the number of evaluations that can be done to find Pareto-optimal solutions. Frequently used multiobjective optimization methods are based on evolutionary strategies and generally require a prohibitively large number of function evaluations to find a good approximation of the Pareto front. SOCEMO, in contrast, employs surrogate models to approximate the expensive objective functions. These surrogate models are used in the iterative sampling process to decide at which points in the variable domain the next expensive evaluations should be done. Therefore, fewer expensive objective function evaluations are needed, and a good approximation of the Pareto front can be found efficiently. Previous algorithms have generally been tested on problems with few variables (up to 10) and few objective functions (up to 5). In our numerical study, we show that our algorithm performs well for benchmark problems with up to 35 dimensions and up to 10 objective functions, as well as two engineering application problems. We compared the performance of SOCEMO to a variant of NSGA-II and show that SOCEMO's sophisticated search strategy is more efficient than NSGA-II when the number of allowable function evaluations is low.
机译:我们针对具有多个冲突且计算量大的黑盒目标函数的优化问题提出了SOCEMO算法。目标函数评估产生的计算费用极大地限制了可以找到帕累托最优解的评估次数。经常使用的多目标优化方法是基于进化策略的,并且通常需要大量的功能评估才能找到帕累托前沿的良好近似。相反,SOCEMO使用代理模型来近似昂贵的目标函数。这些替代模型用于迭代采样过程中,以确定应该在可变域中的哪些点进行下一次昂贵的评估。因此,需要较少的昂贵目标函数评估,并且可以有效地找到帕累托前沿的良好近似。以前的算法通常已针对变量少(最多10个)和目标函数少(最多5个)的问题进行了测试。在我们的数值研究中,我们证明了我们的算法对于多达35个维度和10个目标函数以及两个工程应用问题的基准问题表现良好。我们将SOCEMO与NSGA-II的变体进行了比较,结果表明,当允许的函数评估次数很少时,SOCEMO的复杂搜索策略比NSGA-II更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号