首页> 外文期刊>IEEE transactions on evolutionary computation >Multiproblem Surrogates: Transfer Evolutionary Multiobjective Optimization of Computationally Expensive Problems
【24h】

Multiproblem Surrogates: Transfer Evolutionary Multiobjective Optimization of Computationally Expensive Problems

机译:多问题代理:计算昂贵问题的转移进化多目标优化

获取原文
获取原文并翻译 | 示例

摘要

In most real-world settings, designs are often gradually adapted and improved over time. Consequently, there exists knowledge from distinct (but possibly related) design exercises, which have either been previously completed or are currently in-progress, that may be leveraged to enhance the optimization performance of a particular target optimization task of interest. Further, it is observed that modern day design cycles are typically distributed in nature, and consist of multiple teams working on associated ideas in tandem. In such environments, vast amounts of related information can become available at various stages of the search process corresponding to some ongoing target optimization exercise. Successfully exploiting this knowledge is expected to be of significant value in many practical settings, where solving an optimization problem from scratch may be exorbitantly costly or time consuming. Accordingly, in this paper, we propose an adaptive knowledge reuse framework for surrogate-assisted multiobjective optimization of computationally expensive problems, based on the novel idea of multiproblem surrogates. This idea provides the capability to acquire and spontaneously transfer learned models across problems, facilitating efficient global optimization. The efficacy of our proposition is demonstrated on a series of synthetic benchmark functions, as well as two practical case studies.
机译:在大多数实际环境中,设计通常会随着时间的流逝逐渐适应和改进。因此,存在来自截然不同(但可能相关)的设计练习的知识,这些知识要么已经完成,要么正在开发中,可以用来增强特定目标优化任务的优化性能。此外,可以观察到,现代设计周期通常是自然分布的,并且由多个团队共同研究相关的想法组成。在这样的环境中,在与某些正在进行的目标优化工作相对应的搜索过程的各个阶段,大量的相关信息将变得可用。在许多实际环境中,成功地利用这一知识将具有重要价值,在这些环境中,从头开始解决优化问题可能会耗费大量成本或时间。因此,在本文中,我们基于多问题代理的新颖思想,提出了一种用于替代辅助多目标优化计算昂贵问题的自适应知识重用框架。这种想法提供了获取和自发地跨问题学习模型的能力,从而促进了有效的全局优化。我们的主张的有效性在一系列综合基准函数以及两个实际案例研究中得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号