首页> 外文期刊>INFORMS journal on computing >Synthetic Optimization Problem Generation: Show Us the Correlations!
【24h】

Synthetic Optimization Problem Generation: Show Us the Correlations!

机译:综合优化问题生成:向我们展示相关性!

获取原文
获取原文并翻译 | 示例

摘要

In many computational experiments, correlation is induced between certain types of coefficients in synthetic (or simulated) instances of classical optimization problems. Typically, the correlations that are induced are only qualified-that is, described by their presumed intensity. We quantify the population correlations induced under several strategies for simulating 0-1 knapsack problem instances and also for correlation-induction approaches used to simulate instances of the generalized assignment, capital budgeting (or multidimensional knapsack), and set-covering problems. We discuss implications of these correlation-induction methods for previous and future computational experiments on simulated optimization problems.
机译:在许多计算实验中,在经典优化问题的合成(或模拟)实例中,某些类型的系数之间引起了相关性。通常,所引发的相关仅是合格的,即由它们的假定强度来描述。我们对在模拟0-1背包问题实例的几种策略以及用于模拟广义分配,资本预算(或多维背包)和集合覆盖问题的实例的相关性归纳方法下量化的人口相关性进行了量化。我们讨论了这些相关性归纳方法对于模拟优化问题的先前和将来的计算实验的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号