首页> 外文期刊>INFORMS journal on computing >Solving the Pricing Problem in a Branch-and-Price Algorithm for Graph Coloring Using Zero-Suppressed Binary Decision Diagrams
【24h】

Solving the Pricing Problem in a Branch-and-Price Algorithm for Graph Coloring Using Zero-Suppressed Binary Decision Diagrams

机译:使用零抑制二元决策图解决图着色的分支价格算法中的定价问题

获取原文
获取原文并翻译 | 示例

摘要

Branch-and-price algorithms combine a branch-and-bound search with an exponentially sized LP formulation that must be solved via column generation. Unfortunately, the standard branching rules used in branch and bound for integer programming interfere with the structure of the column generation routine; therefore, most such algorithms employ alternate branching rules to circumvent this difficulty. This paper shows how a zero-suppressed binary decision diagram can be used to solve the pricing problem in a branch-and-price algorithm for the graph coloring problem, even in the presence of constraints imposed by branching decisions. This approach facilitates a much more direct solution method and can improve convergence of the column generation subroutine.
机译:分支价格算法将分支搜索与必须通过列生成解决的指数大小的LP公式结合在一起。不幸的是,用于整数编程的分支和绑定中使用的标准分支规则会干扰列生成例程的结构。因此,大多数此类算法采用替代分支规则来规避此困难。本文说明了即使在存在分支决策施加的约束的情况下,零抑制的二元决策图也可用于解决图着色问题的分支价格算法中的定价问题。此方法有助于采用一种更为直接的解决方法,并且可以改善列生成子例程的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号