首页> 外文期刊>Information technology & management >A loan default discrimination model using cost-sensitive support vector machine improved by PSO
【24h】

A loan default discrimination model using cost-sensitive support vector machine improved by PSO

机译:PSO改进的基于成本敏感支持向量机的贷款违约歧视模型

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a novel PSO-CS-SVM model that hybridizes the particle swarm optimization (PSO) and cost sensitive support vector machine (CS-SVM) to deal with the problem of unbalanced data classification and asymmetry misclassification cost in loan default discrimination problem. Cost sensitive learning is applied to the standard SVM by integrating misclassification cost of each sample into standard SVM and PSO is employed for parameter determination of the CS-SVM. Meantime, the financial data are discretized by using the self-organizing mapping neural network. And the evaluation indices are reduced without information loss by genetic algorithm for decreasing the complexity of the model. The effectiveness of integrated model of CS-SVM and PSO is verified by three experiments comparing with traditional CS-SVM, PSO-SVM, SVM and BP neural network through real loan default data of companies in China. The corresponding results indicate that the accuracy rate, hit rate, covering rate and lift coefficient are improved dramatically by the developed approach. The proposed method can control the different types of errors distribution with various cost of misclassification accurately, reduce the total misclassification cost largely, and distinguish the loan default problems effectively.
机译:本研究提出了一种新颖的PSO-CS-SVM模型,该模型将粒子群优化(PSO)和成本敏感支持向量机(CS-SVM)混合在一起,以解决贷款违约歧视问题中的数据分类不对称和分类费用不对称的问题。通过将每个样本的误分类成本整合到标准SVM中,将成本敏感型学习应用于标准SVM,并将PSO用于CS-SVM的参数确定。同时,通过使用自组织映射神经网络对财务数据进行离散化。遗传算法降低了评估指标,且不损失信息,降低了模型的复杂度。通过中国公司的真实贷款违约数据,通过三个实验与传统的CS-SVM,PSO-SVM,SVM和BP神经网络进行比较,验证了CS-SVM和PSO集成模型的有效性。相应的结果表明,该方法可以显着提高准确率,命中率,覆盖率和升力系数。所提出的方法可以准确地控制各种类型的错误分配,并具有各种错误分类的成本,可以大大降低错误分类的总成本,并且可以有效地识别贷款违约问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号