首页> 外文期刊>Information Processing Letters >Kolmogorov-Loveland stochasticity for finite strings
【24h】

Kolmogorov-Loveland stochasticity for finite strings

机译:有限弦的Kolmogorov-Loveland随机性

获取原文
获取原文并翻译 | 示例

摘要

Asarin [Theory Probab. Appl. 32 (1987) 507-508] showed that any finite sequence with small randomness deficiency has the stability property of the frequency of 1 s in their subsequences selected by simple Kolmogorov-Loveland selection rules. Roughly speaking the difference between frequency m of zeros and 1/2 in a subsequence of length n selected from a sequence with randomness deficiency d by a selection rule of complexity k is bounded by O(((d + k + log n))~(1/2)) in absolute value. In this paper we prove a result in the inverse direction: if the randomness deficiency of a sequence is large then there is a simple Kolmogorov-Loveland selection rule that selects not too short subsequence in which frequency of ones is far from 1/2. Roughly speaking for any sequence of length N there is a selection rule of complexity O(log(N/d)) selecting a subsequence such that |m - 1/2| = Ω(d/(n log(N/d))).
机译:Asarin [理论Probab。应用32(1987)507-508]表明,具有小的随机缺陷的任何有限序列在通过简单的Kolmogorov-Loveland选择规则选择的子序列中都具有1 s频率的稳定性。粗略地说,从复杂度为k的选择规则从具有随机性缺陷d的序列中选择的长度为n的子序列中,频率m / n的零与1/2之间的差由O((((d + k + log n) / n)〜(1/2))的绝对值。在本文中,我们证明了反方向的结果:如果序列的随机性缺陷较大,则存在一个简单的Kolmogorov-Loveland选择规则,该规则选择频率不太远于1/2的不太短的子序列。粗略地说,对于任何长度为N的序列,都有一个选择复杂度为O(log(N / d))的选择规则,该子序列选择| m / n-1/2 | =Ω(d /(n log(N / d)))。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号