首页> 外文期刊>Information Processing & Management >An end-to-end pseudo relevance feedback framework for neural document retrieval
【24h】

An end-to-end pseudo relevance feedback framework for neural document retrieval

机译:神经文件检索的端到端伪相关反馈框架

获取原文
获取原文并翻译 | 示例

摘要

Pseudo relevance feedback (PRF) is commonly used to boost the performance of traditional information retrieval (IR) models by using top-ranked documents to identify and weight new query terms, thereby reducing the effect of query-document vocabulary mismatches. While neural retrieval models have recently demonstrated promising results for ad-hoc document retrieval, combining them with PRF is not straightforward due to incompatibilities between existing PRF approaches and neural architectures. To bridge this gap, we propose an end-to-end neural PRF framework, coined NPRF, that enriches the representation of user information need from a single query to multiple PRF documents. NPRF can be used with existing neural IR models by embedding different neural models as building blocks. Three state-of-the-art neural retrieval models, including the unigram DRMM and KNRM models, and the position-aware PACRR model, are utilized to instantiate the NPRF framework. Extensive experiments on two standard test collections, TREC1-3 and Robust04, confirm the effectiveness of the proposed NPRF framework in improving the performance of three state-of-the-art neural IR models. In addition, analysis shows that integrating the existing neural IR models within the NPRF framework results in reduced training and validation losses, and consequently, improved effectiveness of the learned ranking functions.
机译:伪相关性反馈(PRF)通常用于通过使用排名级文档来识别和重量新的查询术语来提高传统信息检索(IR)模型的性能,从而降低查询文档词汇表不匹配的效果。虽然神经检索模型最近展示了Ad-hoc文件检索的有希望的结果,但由于现有的PRF方法和神经结构之间的不兼容性,将它们与PRF结合并不简单。为了弥合这一差距,我们提出了一个端到端的神经PRF框架,被创建的NPRF,它从单个查询到多个PRF文档丰富了用户信息的表现。通过将不同的神经模型作为构建块嵌入不同的神经模型,NPRF可以与现有的神经IR模型一起使用。三种最先进的神经检索模型,包括UNIGRAM DRMM和KNRM模型,以及位置感知PACRR模型,用于实例化NPRF框架。在两个标准测试收集,TREC1-3和ROBUST04上进行了广泛的实验,确认了提出了拟议的NPRF框架在提高了三种最先进的神经IR模型的性能方面的有效性。此外,分析表明,在NPRF框架内集成现有的神经IR模型导致训练和验证损失降低,从而提高了学习排名功能的有效性。

著录项

  • 来源
    《Information Processing & Management》 |2020年第2期|102182.1-102182.15|共15页
  • 作者单位

    Computer Network Information Center Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China;

    Computer Network Information Center Chinese Academy of Sciences Beijing China;

    University of Chinese Academy of Sciences Beijing China Institute of Software Chinese Academy of Sciences Beijing China;

    University of Chinese Academy of Sciences Beijing China Institute of Software Chinese Academy of Sciences Beijing China;

    Institute of Software Chinese Academy of Sciences Beijing China;

    State Grid Energy Research Institute Beijing China;

    University of Chinese Academy of Sciences Beijing China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号