首页> 外文期刊>Information Processing & Management >Discovering attractive segments in the user-generated video streams
【24h】

Discovering attractive segments in the user-generated video streams

机译:在用户生成的视频流中发现有吸引力的细分

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of digital equipment and the continuous upgrading of online media, a growing number of people are willing to post videos on the web to share their daily lives (Jelodar, Paulius, & Sun, 2019). Generally, not all video segments are popular with audiences, some of which may be boring. If we can predict which segment in a newly generated video stream would be popular, the audiences can only enjoy this segment rather than watch the whole video to find the funny point. And if we can predict the emotions that the audiences would induce when they watch a video, this must be helpful for video analysis and for guiding the video-makers to improve their videos. In recent years, crowd-sourced time-sync video comments have emerged worldwide, supporting further research on temporal video labeling. In this paper, we propose a novel framework to achieve the following goal: Predicting which segment in a newly generated video stream (hasn't been commented with the time-sync comments) will be popular among the audiences. At last, experimental results on real-world data demonstrate the effectiveness of the proposed framework and justify the idea of predicting the popularities of segments in a video exploiting crowd-sourced time-sync comments as a bridge to analyze videos.
机译:随着数字设备的快速发展和在线媒体的不断升级,越来越多的人愿意在网络上发布视频以分享他们的日常生活(Jelodar,Paulius和Sun,2019年)。通常,并非所有视频片段都受到观众的欢迎,其中有些可能很无聊。如果我们可以预测新生成的视频流中的哪个片段会很受欢迎,那么观众只能享受这个片段,而不能观看整个视频来找到有趣的地方。而且,如果我们可以预测观众观看视频时会引起的情绪,那么这对于视频分析和指导视频制作者改善他们的视频必不可少。近年来,在世界范围内出现了众包的时间同步视频评论,支持对时间视频标签的进一步研究。在本文中,我们提出了一个新颖的框架来实现以下目标:预测新生成的视频流中的哪个片段(尚未使用时间同步评论进行评论)将在观众中流行。最后,关于真实世界数据的实验结果证明了所提出框架的有效性,并证明了通过利用众包时间同步评论作为分析视频的桥梁来预测视频中片段流行度的想法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号