首页> 外文期刊>Information and computation >Bisimulation for Labelled Markov Processes
【24h】

Bisimulation for Labelled Markov Processes

机译:标记马尔可夫过程的双仿真

获取原文
获取原文并翻译 | 示例

摘要

In this paper we introduce a new class of labelled transition systems+labelled Markov processes+ and define bisimulation for them. Labelled Markov processes are probabilistic labelled transition systems where the state space is not necessarily discrete. We assume that the state space is a certain type of common metric space called an analytic space. We show that our definition of probabilistic bisimulation generalizes the Larsen+Skou definition given for discrete systems. The formalism and mathematics is substantially different from the usual treatment of probabilistic process algebra. The main technical contribution of the paper is a logical characterization of probabilistic bisimulation. This study revealed some unexpected results, even for discrete probabilistic systems. 1. Bisimulation can be characterized by a very weak modal logic. The most striking feature is that one has no negation or any kind of negative proposition. 2. We do not need any finite branching assumption, yet there is no need of infinitary conjunction. We also show how to construct the maximal autobisimulation on a system. In the finite state case, this is just a state minimization construction. The proofs that we give are of an entirely different character than the typical proofs of these results. They use quite subtle facts about analytic spaces and appear, at first sight, to be entirely nonconstructive. Yet one can give an algorithm for deciding bisimilarity of finite state systems which constructs a formula that witnesses the failure of bisimulation.
机译:在本文中,我们介绍了一类新的标记过渡系统+标记马尔可夫过程+并为其定义双仿真。标记马尔可夫过程是概率标记的过渡系统,其中状态空间不一定是离散的。我们假设状态空间是一种称为分析空间的通用度量空间。我们表明,概率双仿真的定义概括了离散系统给出的Larsen + Skou定义。形式主义和数学与概率过程代数的通常处理方式有很大不同。本文的主要技术贡献是概率双仿真的逻辑表征。这项研究揭示了一些意想不到的结果,即使对于离散的概率系统也是如此。 1.双仿真的特征是模态逻辑非常弱。最显着的特征是没有否定性或任何否定主张。 2.我们不需要任何有限的分支假设,但也不需要无限的合取。我们还展示了如何在系统上构造最大的自双仿真。在有限状态下,这仅仅是状态最小化构造。我们提供的证明与这些结果的典型证明完全不同。他们使用关于解析空间的相当微妙的事实,乍看起来似乎是完全非建设性的。然而,可以给出一种确定有限状态系统双相似性的算法,该算法构建了一个见证双仿真失败的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号