首页> 外文期刊>Information and computation >Constructive linear-time temporal logic: Proof systems and Kripke semantics
【24h】

Constructive linear-time temporal logic: Proof systems and Kripke semantics

机译:建构线性时间逻辑:证明系统和Kripke语义

获取原文
获取原文并翻译 | 示例

摘要

In this paper we study a version of'constructive linear-time temporal logic (LTL) with the "next" temporal operator. The logic is originally due to Davies, who has shown that the proof system of the logic corresponds to a type system for binding-time analysis via the Curry-Howard isomorphism. However, he did not investigate the logic itself in detail; he has proved only that the logic augmented with negation and classical reasoning is equivalent to (the "next" fragment of) the standard formulation of classical linear-time temporal logic. We give natural deduction, sequent calculus and Hilbert-style proof systems for constructive LTL with conjunction, disjunction and falsehood, and show that the sequent calculus enjoys cut elimination. Moreover, we also consider Kripke semantics and prove soundness and completeness. One distinguishing feature of this logic is that distributivity of the "next" operator over disjunction "O(A v 8) ∪ OA v OB" is rejected in view of a type-theoretic interpretation.
机译:在本文中,我们研究了带有“下一个”时间运算符的“构造线性时间逻辑”(LTL)版本。逻辑最初是由戴维斯(Davies)提出的,他已经证明逻辑的证明系统对应于通过Curry-Howard同构进行绑定时间分析的类型系统。但是,他没有详细研究逻辑本身。他只证明了用否定和经典推理进行扩充的逻辑等同于经典线性时间时序逻辑的标准格式(“下一个”片段)。我们给出了构造性LTL的自然演绎,相继演算和希尔伯特风格的证明系统,包括合取,析取和虚假,并证明了相继演算享有削减优势。此外,我们还考虑了Kripke语义并证明了完整性和完整性。该逻辑的一个显着特征是,考虑到类型理论的解释,“下一个”算子相对于“ O(A v 8)∪OA v OB”的相异性的分布被拒绝了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号