首页> 外文期刊>Information and computation >Fixed-parameter algorithms for Cochromatic Number and Disjoint Rectangle Stabbing via iterative localization
【24h】

Fixed-parameter algorithms for Cochromatic Number and Disjoint Rectangle Stabbing via iterative localization

机译:通过迭代定位的同色数和不相交矩形刺固定参数算法

获取原文
获取原文并翻译 | 示例

摘要

Given a permutation π of (1 ....,n) and a positive integer k, can 7t be partitioned into at most k subsequences, each of which is either increasing or decreasing? We give an algorithm with running time 2~o(k~2 log k)n~o(1) that solves this problem, thereby showing that it is fixed parameter tractable. This NP-complete problem is equivalent to deciding whether the cochromatic number of a given permutation graph on n vertices is at most k. Our algorithm solves in fact a more general problem: within the mentioned running time, it decides whether the cochromatic number of a given perfect graph on n vertices is at most k. To obtain our result we use a combination of two well-known techniques within parameterized algorithms: iterative compression and greedy localization. Consequently we name this combination "iterative localization". We further demonstrate the power of this combination by giving an algorithm with running time 2~(O(k~2 log k))n log n that decides whether a given set of n non-overlapping axis-parallel rectangles can be stabbed by at most k of a given set of horizontal and vertical lines.
机译:给定一个(1 ....,n)的置换π和一个正整数k,可以将7t划分为最多k个子序列,每个子序列要么增加要么减少?我们给出了一种运行时间为2〜o(k〜2 log k)n〜o(1)的算法来解决该问题,从而证明它是固定参数可处理的。这个NP完全问题等同于确定给定排列图在n个顶点上的同色数是否最多为k。我们的算法实际上解决了一个更普遍的问题:在上述运行时间内,它确定n个顶点上给定完美图的同色数最多是否为k。为了获得我们的结果,我们在参数化算法中结合了两种众所周知的技术:迭代压缩和贪婪定位。因此,我们将此组合称为“迭代本地化”。我们通过给出运行时间为2〜(O(k〜2 log k))n log n的算法来证明这种组合的力量,该算法决定是否可以通过刺穿给定的n个不重叠的轴平行矩形的给定集合给定的一组水平和垂直线中的大多数k。

著录项

  • 来源
    《Information and computation》 |2013年第10期|109-116|共8页
  • 作者单位

    Department of Informatics, University of Bergen, Norway;

    Universite Paul Verlaine Metz, France;

    Dept. of Comp. Sc. and Engin., University of California San Diego, USA;

    The Institute of Mathematical Sciences, Chennai, India;

    The Institute of Mathematical Sciences, Chennai, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号