首页> 外文期刊>Information and computation >The Rabin index of parity games: Its complexity and approximation
【24h】

The Rabin index of parity games: Its complexity and approximation

机译:奇偶游戏的拉宾指数:其复杂性和近似性

获取原文
获取原文并翻译 | 示例

摘要

We study the descriptive complexity of parity games by taking into account the coloring of their game graphs whilst ignoring their ownership structure. Colorings of game graphs are identified if they determine the same winning regions and strategies, for all ownership structures of nodes. The Rabin index of a parity game is the minimum of the maximal color taken over all equivalent coloring functions. We show that deciding whether the Rabin index is at least k is in P for k = 1 but NP-hard for all fixed k ≥ 2. We present an EXPTIME algorithm that computes the Rabin index by simplifying its input coloring function. When replacing simple cycle with cycle detection in that algorithm, its output over-approximates the Rabin index in polynomial time. We evaluate this efficient algorithm as a preprocessor of solvers in detailed experiments: for Zielonka's solver on random and structured parity games and for our partial solver pso 1B on random games.
机译:我们通过考虑奇偶游戏的游戏图的着色而忽略其所有权结构来研究奇偶游戏的描述复杂性。如果游戏图的颜色为节点的所有所有权结构确定相同的获胜区域和策略,则将对其进行标识。奇偶游戏的Rabin指数是在所有等效着色函数上采用的最大颜色的最小值。我们表明,对于k = 1而言,确定Rabin指数是否至少为k在P中,而对于所有固定k≥2而言,则为NP-hard。我们提出了一种EXPTIME算法,该算法通过简化其输入着色函数来计算Rabin指数。在该算法中用循环检测替换简单循环时,其输出在多项式时间内使Rabin指数过高。在详细的实验中,我们将这种高效的算法评估为求解器的预处理程序:适用于Zielonka的随机和结构奇偶游戏的求解器,以及我们的部分随机游戏的pso 1B求解器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号