首页> 外文期刊>Information and computation >Faster exponential-time algorithms in graphs of bounded average degree
【24h】

Faster exponential-time algorithms in graphs of bounded average degree

机译:有界平均度图中更快的指数时间算法

获取原文
获取原文并翻译 | 示例

摘要

We present a number of exponential-time algorithms for problems in sparse matrices and graphs of bounded average degree. First, we obtain a simple algorithm that computes a permanent of an n x n matrix over an arbitrary commutative ring with at most dn non-zero entries using O~*(2~((1-1/(3.55d)))~n) time and ring operations, improving and simplifying the recent result of Izumi and Wadayama [FOCS 2012]. Second, we present a simple algorithm for counting perfect matchings in an n-vertex graph in O~*(2~(n/2)) time and polynomial space; our algorithm matches the complexity bounds of the algorithm of Bjoerklund [SODA 2012], but relies on inclusion-exclusion principle instead of algebraic transformations. Third, we show a combinatorial lemma that bounds the number of "Hamiltonian-like" structures in a graph of bounded average degree. Using this result, we show that 1. a minimum weight Hamiltonian cycle in an n-vertex graph with average degree bounded by d can be found in O~*(2~(1-ε_d)~n) time and exponential space for a constant ε_d depending only on d; 2. the number of perfect matchings in an n-vertex graph with average degree bounded by d can be computed in O~*(2~(1-ε_d~')~(n/2)) time and exponential space, for a constant ε_d~' depending only on d. The algorithm for minimum weight Hamiltonian cycle generalizes the recent results of Bjoerklund et al. [TALG 2012] on graphs of bounded degree.
机译:对于稀疏矩阵和有界平均度图中的问题,我们提出了许多指数时间算法。首先,我们获得一种简单的算法,该算法使用O〜*(2〜(((1-1 /(3.55d)))〜n)在任意最多n个非零项的任意交换环上计算nxn矩阵的永久性时间和铃声操作,改善和简化了Izumi和Wadayama的最新成果[FOCS 2012]。其次,我们提出一种简单的算法,用于计算O〜*(2〜(n / 2))时间和多项式空间中n个顶点图中的完美匹配;我们的算法与Bjoerklund [SODA 2012]算法的复杂度边界相匹配,但是它依赖于包含-排除原理而不是代数变换。第三,我们在有界平均度图中显示了一个组合引理,该引理界定了“类汉密尔顿”结构的数量。利用该结果,我们可以证明1.在O〜*(2〜(1-ε_d)〜n)的时间和指数空间中,可以找到一个平均权数为d的n顶点图的最小权哈密顿环。常数ε_d仅取决于d; 2.在n顶点图中,平均度为d的完全匹配数可以在O〜*(2〜(1-ε_d〜')〜(n / 2))时间和指数空间中计算,对于常数ε_d〜'仅取决于d。最小重量哈密顿循环的算法概括了Bjoerklund等人的最新结果。 [TALG 2012]关于有界度图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号