首页> 外文期刊>Information and computation >Existential second-order logic and modal logic with quantified accessibility relations
【24h】

Existential second-order logic and modal logic with quantified accessibility relations

机译:具有量化可及性关系的现有二阶逻辑和模态逻辑

获取原文
获取原文并翻译 | 示例

摘要

This article investigates the role of arity of second-order quantifiers in existential second-order logic, also known as ∑_1~1. We identify fragments L of ∑_1~1 where second-order quantification of relations of arity k > 1 is (nontrivially) vacuous in the sense that each formula of L can be translated to a formula of (a fragment of) monadic ∑_1~1. Let polyadic Boolean modal logic with identity (PBML=) be the logic obtained by extending standard polyadic multimodal logic with built-in identity modalities and with constructors that allow for the Boolean combination of accessibility relations. Let ∑_1~1(PBML=) be the extension of PBML= with existential prenex quantification of accessibility relations and proposition symbols. The principal result of the article is that ∑_1~1(PBML=) translates into monadic ∑_1~1. As a corollary, we obtain a variety of decidability results for multimodal logic. The translation can also be seen as a step towards establishing whether every property of finite directed graphs expressible in ∑_1~1(FO~2) is also expressible in monadic ∑_1~1. This question was left open in the 1999 paper of Gradel and Rosen in the 14th Annual IEEE Symposium on Logic in Computer Science.
机译:本文研究了二阶量词的精巧性在存在的二阶逻辑(也称为∑_1〜1)中的作用。我们确定∑_1〜1的片段L,其中Ar> k> 1的关系的二阶量化是(非平凡的)空泡,因为L的每个公式都可以翻译成单子∑_1〜的公式(一个片段)。 1。假设具有身份(PBML =)的多元布尔模态逻辑是通过扩展具有内置身份模态和允许访问关系的布尔组合的构造函数的标准多元多模态逻辑而获得的逻辑。令∑_1〜1(PBML =)是PBML =的扩展,具有可访问性关系和命题符号的存在先后量化。本文的主要结果是∑_1〜1(PBML =)转换为单子∑_1〜1。因此,我们获得了多峰逻辑的各种可判定性结果。转换也可以看作是迈向确定在∑_1〜1(FO〜2)中可表达的有限有向图的每个属性在单子∑_1〜1中是否也可表达的一步。这个问题在1999年第14届IEEE计算机科学逻辑研讨会上的Gradel和Rosen的论文中悬而未决。

著录项

  • 来源
    《Information and computation》 |2016年第4期|217-234|共18页
  • 作者

    Lauri Hella; Antti Kuusisto;

  • 作者单位

    Department of Mathematics and Statistics, University of Tampere, Finland,School of Information Sciences, University of Tampere, Finland;

    Department of Mathematics and Statistics, University of Tampere, Finland,Faculty 03: Mathematics/Computer Science, University of Bremen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Existential second-order logic; Modal logic; Finite model theory;

    机译:存在的二阶逻辑;模态逻辑有限模型理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号