首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Enhanced Multiobjective Evolutionary Algorithm Based on Decomposition for Solving the Unit Commitment Problem
【24h】

Enhanced Multiobjective Evolutionary Algorithm Based on Decomposition for Solving the Unit Commitment Problem

机译:基于分解的改进型多目标进化算法求解机组组合问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a multiobjective evolutionary algorithm based on decomposition (MOEA/D) is proposed to solve the unit commitment (UC) problem as a multiobjective optimization problem (MOP) considering minimizing cost and emission as the multiple objectives. Since UC problem is a mixed-integer optimization problem, a hybrid strategy is integrated within the framework of MOEA/D such that genetic algorithm (GA) evolves the binary variables, while differential evolution (DE) evolves the continuous variables. Further, a novel nonuniform weight-vector distribution (NUWD) strategy is proposed and an ensemble algorithm based on combination of MOEA/D with uniform weight-vector distribution (UWD) and NUWD strategy is implemented to enhance the performance of the presented algorithm. Extensive case studies are presented on different test systems and the effectiveness of the hybrid strategy, the NUWD strategy, and the ensemble algorithm is verified through stringent simulated results. Further, exhaustive benchmarking against the algorithm proposed in the literature is presented to demonstrate the superiority of the proposed algorithm.
机译:本文提出了一种基于分解的多目标进化算法(MOEA / D),以最小化成本和排放为多目标,解决单元承诺(UC)问题作为多目标优化问题(MOP)。由于UC问题是一个混合整数优化问题,因此在MOEA / D的框架内集成了一种混合策略,这样遗传算法(GA)可以进化二进制变量,而差分进化(DE)则可以进化连续变量。此外,提出了一种新颖的非均匀权向量分布策略,并实现了基于MOEA / D与均匀权向量分布相结合的集成算法和NUWD策略,以提高算法的性能。提出了针对不同测试系统的大量案例研究,并通过严格的模拟结果验证了混合策略,NUWD策略和集成算法的有效性。此外,提出了针对文献中提出的算法的详尽基准测试,以证明所提出算法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号