首页> 美国卫生研究院文献>other >Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks
【2h】

Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

机译:动态社会网络中基于分解的多目标进化社区检测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.
机译:社区结构是社交网络中最重要的属性之一。在动态网络中,需要考虑两个冲突的标准。一种是快照质量,它可以评估当前时间步中社区分区的质量。另一个是时间成本,它评估了不同时间步长的社区之间的差异。在本文中,我们提出了一种基于分解的多目标社区检测算法,以同时优化这两个目标,以揭示社区结构及其在动态网络中的演化。它采用基于分解的多目标进化算法框架,以同时优化模块化和标准化互信息,从而分别量化地评估了社区划分的质量和时间成本。结合了针对特定问题的知识的本地搜索策略,以提高新算法的有效性。在计算机生成的网络和真实世界的网络上进行的实验表明,该算法不仅可以更准确地找到社区结构并捕获社区演变,而且比两种算法相比更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号