首页> 外文期刊>IEEE transactions on industrial informatics >An Indoor Localization Algorithm Based on Modified Joint Probabilistic Data Association for Wireless Sensor Network
【24h】

An Indoor Localization Algorithm Based on Modified Joint Probabilistic Data Association for Wireless Sensor Network

机译:一种基于改进联合概率数据关联的无线传感器网络的室内定位算法

获取原文
获取原文并翻译 | 示例

摘要

Due to the localization accuracy of global positioning system (GPS) cannot meet the requirements in indoor environment, the wireless sensor network (WSN) techniques are efficient methods to cope with this problem. The WSN-based indoor localization techniques have become effective methods to solve the problem of indoor localization. Since the nonline-of-sight (NLOS) effect could severely induce the localization accuracy, the primary challenge in indoor localization is the handling of NLOS errors. Due to multipath effect, near-far effect, obstacle occlusion, etc., the NLOS errors become very sophisticated. Aiming at this problem, a modified joint probabilistic data association localization (MJPDA) algorithm is proposed in this article. First, MJPDA obtains a series of preprocessing virtual points by grouping the measurements. Then, the measurements are divided into two categories, that is, line-of-sight (LOS) and NLOS, by virtual points density. In the case of LOS, extended Kalman filter (EKF) is used for processing. For the NLOS case, a series of particles are first generated around the prediction point, and then modified JPDA is used to data association of the virtual points and the particles. Simulations results illustrate that MJPDA is superior to MPDA algorithm and the traditional EKF algorithm in localization accuracy and robustness. Finally, we perform the real experiment to verify the performance of MJPDA. The experimental results demonstrate that MJPDA has prominent performance in mitigating large NLOS errors.
机译:由于全球定位系统的本地化精度(GPS)无法满足室内环境中的要求,无线传感器网络(WSN)技术是应对这个问题的有效方法。基于WSN的室内定位技术已经成为解决室内定位问题的有效方法。由于无线视线(NLOS)效应可能会严重诱导本地化准确性,因此室内定位中的主要挑战是NLOS错误的处理。由于多径效应,近距离效果,障碍物闭塞等,NLOS错误变得非常复杂。针对这个问题,在本文中提出了一种修改的联合概率数据关联定位(MJPDA)算法。首先,MJPDA通过分组测量来获得一系列预处理虚拟点。然后,测量分为两类,即通过虚拟点密度,即视线(LOS)和NLOS。在LOS的情况下,扩展卡尔曼滤波器(EKF)用于处理。对于NLOS案例,首先围绕预测点生成一系列粒子,然后修改JPDA用于虚拟点和粒子的数据关联。仿真结果说明MJPDA优于MPDA算法和传统的EKF算法,以本地化精度和鲁棒性。最后,我们执行真实实验以验证MJPDA的性能。实验结果表明,MJPDA在缓解大型NLOS错误方面具有突出的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号