首页> 外文期刊>IEEE transactions on industrial informatics >A Clustering-Based Surrogate-Assisted Multiobjective Evolutionary Algorithm for Shelter Location Problem Under Uncertainty of Road Networks
【24h】

A Clustering-Based Surrogate-Assisted Multiobjective Evolutionary Algorithm for Shelter Location Problem Under Uncertainty of Road Networks

机译:基于聚类的代理辅助多目标进化算法,用于道路网络不确定性下的避难所地点问题

获取原文
获取原文并翻译 | 示例

摘要

The shelter location is very important for evacuation planning in natural disasters, and evolutionary algorithms (EAs) have demonstrated their effectiveness in solving this challenging problem. However, few EAs have been reported focusing on the shelter location problem under uncertainty of road networks due to the expensive cost of calculating the evacuation distance for individual evaluation. To address this issue, in this article, we propose a clustering-based surrogate-assisted multiobjective EA, termed AR-MOEA+SA, in the framework of a recently developed EA AR-MOEA. In AR-MOEA+SA, a surrogate model, the radial basis function (RBF), is adopted to approximately calculate the evacuation distance under uncertainty of road networks. Due to the fact that there often exist a large number of communities needing to be considered in shelter location, a clustering strategy is suggested to convert the surrogate of high-dimensional problem into the one of low-dimensional problem in the proposed AR-MOEA+SA for efficiently building the RBF network. A population initialization strategy is also suggested in AR-MOEA+SA to enhance the quality of training data in the early stages of evolution. Experimental results on a variety of test instances demonstrate the superiority of the proposed AR-MOEA+SA over the original version of AR-MOEA in terms of both computational efficiency and solution quality.
机译:避难所的位置对于自然灾害的疏散计划非常重要,而进化算法(EAS)已经证明了解决这一具有挑战性问题的有效性。然而,由于计算了个别评估的疏散距离的昂贵成本,已经报道了很少的eas在道路网络不确定性下的避难所地点问题。为了解决此问题,在本文中,我们在最近开发的EA AR-Moea的框架中提出了基于聚类的代理辅助多目标EA,被称为AR-Moea + SA。在AR-MOEA + SA中,采用替代模型,径向基函数(RBF),大致计算道路网络不确定性下的疏散距离。由于存在需要在庇护所需考虑大量的社区,建议将高维问题的代理转换为提议的AR-Moea +中的低维问题的聚类策略SA有效构建RBF网络。在Ar-Moea + SA中还建议了人口初始化策略,以提高进化早期阶段的培训数据质量。在各种测试实例上的实验结果表明,在计算效率和解决方案质量方面,在AR-MOEA的原始版本上展示了所提出的AR-MOEA + SA的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号