首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >A Surrogate-Assisted Multiobjective Evolutionary Algorithm for Large-Scale Task-Oriented Pattern Mining
【24h】

A Surrogate-Assisted Multiobjective Evolutionary Algorithm for Large-Scale Task-Oriented Pattern Mining

机译:大规模面向任务模式挖掘的代理辅助多目标进化算法

获取原文
获取原文并翻译 | 示例

摘要

As a branch of frequent pattern mining, the task-oriented pattern mining has received increasing attention due to its broad application scenarios. The lexicographic subset tree based algorithm and the multiobjective evolutionary algorithm are two effective approaches for finding the most frequent and complete pattern in task-oriented applications. However, both suffer from heavy computational cost since their runtime increases rapidly as the transaction dataset is scaled up. To address this issue, this paper regards the task-oriented pattern mining as a data-driven optimization problem and solves it by using a surrogate-assisted multiobjective evolutionary algorithm. Based on the framework of our previous multiobjective evolutionary algorithm for task-oriented pattern mining, the proposed algorithm estimates the objective values of most solutions using an ensemble of surrogates instead of the real objective functions, thereby highly improving the efficiency of the algorithm. Experimental results on three task-oriented applications indicate that the proposed algorithm has better efficiency than state-of-the-art algorithms.
机译:作为频繁模式挖掘的一个分支,面向任务的模式挖掘由于其广泛的应用场景而受到越来越多的关注。基于字典的子集树算法和多目标进化算法是在面向任务的应用程序中找到最频繁和完整模式的两种有效方法。但是,这两种方法都承受着沉重的计算成本,因为随着事务数据集规模的扩大,它们的运行时间会迅速增加。为了解决这个问题,本文将面向任务的模式挖掘视为一个数据驱动的优化问题,并通过使用代理辅助的多目标进化算法来解决。基于我们以前的面向任务模式挖掘的多目标进化算法的框架,提出的算法使用代理集合而不是真实的目标函数来估计大多数解决方案的目标值,从而大大提高了算法的效率。在三个面向任务的应用程序上的实验结果表明,与现有技术相比,该算法具有更高的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号