首页> 外文期刊>IEEE transactions on industrial informatics >Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data
【24h】

Deep Learning for Industrial KPI Prediction: When Ensemble Learning Meets Semi-Supervised Data

机译:深入学习工业KPI预测:当集合学习符合半监督数据时

获取原文
获取原文并翻译 | 示例

摘要

Soft-sensing techniques are of great significance in industrial processes for monitoring and prediction of key performance indicators. Due to the effectiveness of nonlinear feature extraction and strong expansibility, an autoencoder (AE) and its extensions have been widely developed for industrial applications. Nevertheless, an AE commonly uses the last hidden layer for regression modeling with the output, which seems to be a kind of information waste as the shallow layers are also abstractions of input data. Besides, when there are excessive unlabeled samples, AE-based models are less likely to make full use of them or even degrade the performance. To deal with these issues, a method called ensemble semi-supervised gated stacked AE (ES(2)GSAE) is proposed in this article. Gate units are used to develop connections between different layers and the output layer, which also help quantify the contribution of different hidden layers. Moreover, the idea of ensemble learning is combined with semi-supervised learning, in which different unlabeled datasets are used for training different submodels to ensure their diversities. In this way, unlabeled samples can be utilized more efficiently and help enhance the model performance. The effectiveness and superiority are verified in a real industrial process by comparing the proposed method with other typical AE-based models.
机译:软传感技术对于关键绩效指标监测和预测的工业流程具有重要意义。由于非线性特征提取的有效性和强大的可扩展性,为工业应用广泛开发了一种自动化器(AE)及其延伸。然而,AE通常使用最后一个隐藏层进行回归建模,该输出似乎是一种信息浪费,因为浅层也是输入数据的抽象。此外,当有过多的未标记样品时,基于AE的模型不太可能充分利用它们,或甚至降低性能。要处理这些问题,请在本文中提出了一种称为集合半监控所堆叠的AE(ES(2)GSAE)的方法。栅极单元用于开发不同层和输出层之间的连接,这也有助于量化不同隐藏层的贡献。此外,集合学习的想法与半监督学习相结合,其中不同的未标记数据集用于培训不同的子模型以确保其多样性。以这种方式,可以更有效地利用未标记的样本,并有助于提高模型性能。通过将提出的方法与基于典型的AE的模型进行比较,在实际工业过程中验证了有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号