首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >When Dictionary Learning Meets Deep Learning: Deep Dictionary Learning and Coding Network for Image Recognition With Limited Data
【24h】

When Dictionary Learning Meets Deep Learning: Deep Dictionary Learning and Coding Network for Image Recognition With Limited Data

机译:当字典学习符合深度学习时:具有有限数据的图像识别的深刻字典学习和编码网络

获取原文
获取原文并翻译 | 示例

摘要

We present a new deep dictionary learning and coding network (DDLCN) for image-recognition tasks with limited data. The proposed DDLCN has most of the standard deep learning layers (e.g., input/output, pooling, and fully connected), but the fundamental convolutional layers are replaced by our proposed compound dictionary learning and coding layers. The dictionary learning learns an overcomplete dictionary for input training data. At the deep coding layer, a locality constraint is added to guarantee that the activated dictionary bases are close to each other. Then, the activated dictionary atoms are assembled and passed to the compound dictionary learning and coding layers. In this way, the activated atoms in the first layer can be represented by the deeper atoms in the second dictionary. Intuitively, the second dictionary is designed to learn the fine-grained components shared among the input dictionary atoms; thus, a more informative and discriminative low-level representation of the dictionary atoms can be obtained. We empirically compare DDLCN with several leading dictionary learning methods and deep learning models. Experimental results on five popular data sets show that DDLCN achieves competitive results compared with state-of-the-art methods when the training data are limited. Code is available at https://github.com/Ha0Tang/DDLCN.
机译:我们为具有有限数据的图像识别任务提供了一个新的深刻字典学习和编码网络(DDLCN)。所提出的DDLCN具有大多数标准深度学习层(例如,输入/输出,池和完全连接),但基本卷积层被我们所提出的复合词典学习和编码层所取代。字典学习了解过度计算训练数据的过度象限字典。在深编码层处,添加了局部约束以保证激活的字典基础彼此接近。然后,将激活的字典原子组装并传递给化合物字典学习和编码层。以这种方式,第一层中的活化原子可以由第二字典中的深层原子表示。直观地,第二条典旨在学习输入词典原子之间共享的细粒度组件;因此,可以获得字典原子的更具信息和辨别性的低级表示。我们经验与若干领先的字典学习方法和深度学习模型进行了统一的DDLCN。在五个流行数据集上的实验结果表明,当训练数据有限时,DDLCN与最先进的方法相比实现了竞争结果。代码可在https://github.com/ha0tang/ddlcn获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号