首页> 外文期刊>IEEE transactions on industrial informatics >Achieving Personalized k-Anonymity-Based Content Privacy for Autonomous Vehicles in CPS
【24h】

Achieving Personalized k-Anonymity-Based Content Privacy for Autonomous Vehicles in CPS

机译:为CPS中的自治车辆实现个性化K-匿名基于内容隐私

获取原文
获取原文并翻译 | 示例

摘要

Enabled by the industrial Internet, intelligent transportation has made remarkable achievements such as autonomous vehicles by carnegie mellon university (CMU) Navlab, Google Cars, Tesla, etc. Autonomous vehicles benefit, in various aspects, from the cooperation of the industrial Internet and cyber-physical systems. In this process, users in autonomous vehicles submit query contents, such as service interests or user locations, to service providers. However, privacy concerns arise since the query contents are exposed when the users are enjoying the services queried. Existing works on privacy preservation of query contents rely on location perturbation or k-anonymity, and they suffer from insufficient protection of privacy or low query utility incurred by processing multiple queries for a single query content. To achieve sufficient privacy preservation and satisfactory query utility for autonomous vehicles querying services in cyber-physical systems, this article proposes a novel privacy notion of client-based personalized k-anonymity (CPkA). To measure the performance of CPkA, we present a privacy metric and a utility metric, based on which, we formulate two problems to achieve the optimal CPkA in term of privacy and utility. An approach, including two modules, to establish mechanisms which achieve the optimal CPkA is presented. The first module is to build in-group mechanisms for achieving the optimal privacy within each content group. The second module includes linear programming-based methods to compute the optimal grouping strategies. The in-group mechanisms and the grouping strategies are combined to establish optimal CPkA mechanisms, which achieve the optimal privacy or the optimal utility. We employ real-life datasets and synthetic prior distributions to evaluate the CPkA mechanisms established by our approach. The evaluation results illustrate the effectiveness and efficiency of the established mechanisms.
机译:由工业互联网实现,智能交通使Carnegie Mellon University(CMU)Navlab,谷歌汽车,特斯拉等自治车辆等成就取得了卓越的成就,从工业互联网和网络的合作中受益于各个方面物理系统。在此过程中,自动车辆中的用户将查询内容(例如服务兴趣或用户位置)提交给服务提供商。但是,由于在用户享受查询服务时,查询内容出现了隐私问题。现有的隐私保存查询内容的工作依赖于位置扰动或k-匿名,并且它们通过处理多个查询内容来遭受隐私保护或低查询实用程序的不足。为了实现足够的隐私保存和令人满意的查询实用程序,用于自动车辆查询网络物理系统中的服务,提出了一种基于客户的个性化K-Anonyment(CPKA)的新颖隐私概念。为了衡量CPKA的性能,我们提出了一个隐私度量和公用事业度量,我们制定了两个问题,以实现隐私和实用程序的最佳CPKA。提出了一种方法,包括两个模块,以建立实现最佳CPKA的机制。第一个模块是构建用于在每个内容组内实现最佳隐私的组机制。第二个模块包括基于线性编程的方法来计算最佳分组策略。组合机制和分组策略组合以建立最佳的CPKA机制,实现最佳隐私或最佳效用。我们采用现实生活数据集和合成现有分布,以评估我们的方法建立的CPKA机制。评估结果说明了既定机制的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号