首页> 外文期刊>IEEE transactions on industrial informatics >An Automated Machine Learning Approach for Smart Waste Management Systems
【24h】

An Automated Machine Learning Approach for Smart Waste Management Systems

机译:智能废物管理系统自动化机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the use of automated machine learning for solving a practical problem of a real-life Smart Waste Management system. In particular, the focus of the paper is on the problem of detection (i.e., binary classification) of emptying of a recycling container using sensor measurements. Numerous data-driven methods for solving the problem are investigated in a realistic setting where most of the events are not actual emptying. The investigated methods include the existing manually engineered model and its modification as well as conventional machines learning algorithms. The use of machine learning allows improving the classification accuracy and recall of the existing manually engineered model from $86.8%$ and $47.9%$ to $99.1%$ and $98.2%$, respectively, when using the best performing solution. This solution uses a Random Forest classifier on a set of features based on the filling level at different given time spans. Finally, compared to the baseline existing manually engineered model, the best performing solution also improves the quality of forecasts for emptying time of recycling containers.
机译:本文介绍了自动化机器学习,解决真实智能废物管理系统的实际问题。特别地,纸张的焦点是使用传感器测量排空回收容器的检测(即二元分类)的问题。用于解决问题的许多数据驱动方法在一个现实的环境中调查了大多数事件不是实际的排空。调查方法包括现有的手动工程模型及其修改以及传统机器学习算法。使用机器学习的使用允许在使用最佳执行解决方案时,从86.8 %$和47.9 %$ 47.9 %$ 47.9 %$ 47.9 %$ 47.9 %$ 99.2 %$升值。此解决方案在基于不同给定时间跨度的填充水平的一组特征上使用随机林分类器。最后,与基线现有的手动工程模型相比,最好的执行解决方案还提高了对回收容器排空时间的预测的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号