首页> 外文期刊>Computers & Security >Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach
【24h】

Automated poisoning attacks and defenses in malware detection systems: An adversarial machine learning approach

机译:恶意软件检测系统中的自动中毒攻击和防御:对抗性机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe evolution of mobile malware poses a serious threat to smartphone security. Today, sophisticated attackers can adapt by maximally sabotaging machine-learning classifiers via polluting training data, rendering most recent machine learning-based malware detection tools (such as Drebin, DroidAPIMiner, and MaMaDroid) ineffective. In this paper, we explore the feasibility of constructing crafted malware samples; examine how machine-learning classifiers can be misled under three different threat models; then conclude that injecting carefully crafted data into training data can significantly reduce detection accuracy. To tackle the problem, we propose KuafuDet, a two-phase learning enhancing approach that learns mobile malware by adversarial detection. KuafuDetincludes an offline training phase that selects and extracts features from the training set, and an online detection phase that utilizes the classifier trained by the first phase. To further address the adversarial environment, these two phases are intertwined through a self-adaptive learning scheme, wherein an automated camouflage detector is introduced to filter the suspicious false negatives and feed them back into the training phase. We finally show that KuafuDetcan significantly reduce false negatives and boost the detection accuracy by at least 15%. Experiments on more than 250,000 mobile applications demonstrate that KuafuDetis scalable and can be highly effective as a standalone system.
机译: 摘要 移动恶意软件的发展对智能手机的安全性构成了严重威胁。如今,老练的攻击者可以通过污染培训数据来最大程度地破坏机器学习分类器,从而提供最新的基于机器学习的恶意软件检测工具(例如D rebin roid APIM inner 和M a M a D roid )无效。在本文中,我们探讨了构建恶意软件样本的可行性。研究如何在三种不同的威胁模型下误导机器学习分类器;然后得出结论,将精心制作的数据注入训练数据可能会大大降低检测精度。为了解决这个问题,我们提出了K uafu D et 的两阶段学习增强方法,通过对抗检测来学习移动恶意软件。 K uafu D et 包括一个离线训练阶段,该阶段从训练集中选择和提取特征,并且一个在线检测阶段,该阶段利用了由第一阶段训练的分类器。为了进一步解决对抗环境,这两个阶段通过自适应学习方案交织在一起,其中引入了一种自动伪装检测器,以过滤可疑的假阴性并将其反馈到训练阶段。我们最终证明,K uafu D et 可以显着减少假阴性并提高检测精度至少15%。在超过250,000个移动应用程序上进行的实验表明,K uafu D et 具有可扩展性,并且可以非常有效作为独立系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号