首页> 外文期刊>IEEE transactions on industrial informatics >Controller Design for Electrical Drives by Deep Reinforcement Learning: A Proof of Concept
【24h】

Controller Design for Electrical Drives by Deep Reinforcement Learning: A Proof of Concept

机译:深度加强学习的电气驱动器控制器设计:概念证明

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This article presents an approach to the controller design for electrical drives, which makes use of methods of deep reinforcement learning. Conventional control methods dominated the field for a long time, since they usually lead to control solutions with very robust and steady results. Yet, it often can be found that the overall control performance heavily correlates with the experience and education of the developing engineer. Moreover, conventional methods strongly depend on the available knowledge of the control system (e.g., plant model accuracy), which often causes the necessity for thorough identification methods. Real-time capability issues are also a present problem of sophisticated control approaches, such as model-predictive methods. Especially, in the domain of electrical drive train control, solving elaborate online optimization problems may be critical when very small plant time constants have to be considered. The methods of deep reinforcement learning will not only enable to acquire a suitable controller structure, but, moreover, the procedure will tune itself, which will allow for a more abstract level of investigation. This article presents a first proof of concept by means of controlling the phase currents of a permanent magnet synchronous motor in a field-oriented framework. The results found are promising and motivate further research in this field.
机译:本文介绍了一种方法对电气驱动器的控制器设计,这是利用深度加强学习的方法。传统的控制方法长期主导了该领域,因为它们通常导致控制解决方案,具有非常坚固且稳定的结果。然而,经常可以发现整体控制性能与发展工程师的经验和教育大致关联。此外,常规方法强烈取决于控制系统的可用知识(例如,植物模型精度),这通常会导致彻底识别方法的必要性。实时能力问题也是一种复杂的控制方法的目前问题,例如模型预测方法。特别是,在电传动系控制器的领域中,当必须考虑非常小的植物时间常数时,解决精心制定的在线优化问题可能是至关重要的。深度加强学习的方法不仅可以获得合适的控制器结构,而且,此外,该过程将调整本身,这将允许更抽象的调查水平。本文通过控制面向现场框架的永磁同步电动机的相电流来提供概念的第一概念证明。发现的结果是有前途和激励该领域的进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号