首页> 外文期刊>IEEE transactions on industrial informatics >Short-Term Forecasting of Electricity Spot Prices Containing Random Spikes Using a Time-Varying Autoregressive Model Combined With Kernel Regression
【24h】

Short-Term Forecasting of Electricity Spot Prices Containing Random Spikes Using a Time-Varying Autoregressive Model Combined With Kernel Regression

机译:时变自回归模型与核回归相结合的随机峰值短期电价预测

获取原文
获取原文并翻译 | 示例

摘要

Forecasting spot prices of electricity is challenging because it not only contains seasonal variations, but also random, abrupt spikes, which depend on market conditions and network contingencies. In this paper, a hybrid model has been developed to forecast the spot prices of electricity in two main stages. In the first stage, the prices are forecasted using autoregressive time varying (ARXTV) model with exogenous variables. To improve the forecasting ability of the ARXTV model, the price variations in the training process have been smoothened using the wavelet technique. In the second stage, a kernel regression is used to estimate the price spikes, which are detected using support vector machine based model. In addition, mutual information technique is employed to select appropriate input variables for the model. A case study is carried out with the aid of price data obtained from the Australian energy market operator. It is demonstrated that the proposed hybrid method can accurately forecast electricity prices containing spikes.
机译:预测电力现货价格具有挑战性,因为它不仅包含季节性变化,而且还包含随机的,突然的峰值,这取决于市场条件和网络突发事件。在本文中,已经开发出一种混合模型来预测两个主要阶段的电力现货价格。在第一阶段,使用带有外生变量的自回归时变(ARXTV)模型预测价格。为了提高ARXTV模型的预测能力,使用小波技术对训练过程中的价格变化进行了平滑处理。在第二阶段,使用核回归估计价格峰值,使用基于支持向量机的模型检测价格峰值。另外,采用互信息技术为模型选择适当的输入变量。案例研究是借助从澳大利亚能源市场运营商那里获得的价格数据进行的。结果表明,所提出的混合方法可以准确地预测包含峰值的电价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号