首页> 外文期刊>IEEE transactions on industrial informatics >A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing
【24h】

A Time-Driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

机译:结合边缘计算和云计算的科学工作流的时间驱动数据放置策略

获取原文
获取原文并翻译 | 示例

摘要

Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effectiveway to deploy scientificworkflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the factors impacting transmission delay, such as the bandwidth between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover and mutation operators of the genetic algorithm were adopted to avoid the premature convergence of traditional particle swarm optimization algo-rithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing.
机译:与传统的分布式计算环境(例如网格)相比,云计算提供了一种更具成本效益的方式来部署科学工作流。科学工作流程的每个任务都需要位于不同数据中心的几个大型数据集,从而导致严重的数据传输延迟。边缘计算可减少数据传输延迟,并支持科学工作流私有数据集的固定存储方式,但其存储容量存在瓶颈。结合边缘计算和云计算的优势来合理化科学工作流的数据放置,并优化跨不同数据中心的数据传输时间是一项挑战。在这项研究中,提出了一种具有遗传算法算子的自适应离散粒子群优化算法(GA-DPSO),以优化为科学工作流放置数据时的数据传输时间。这种方法考虑了结合边缘计算和云计算的数据放置的特征。此外,它还考虑了影响传输延迟的因素,例如数据中心之间的带宽,边缘数据中心的数量以及边缘数据中心的存储容量。采用遗传算法的交叉算子和变异算子,避免了传统粒子群算法的过早收敛,增加了种群进化的多样性,有效减少了数据传输时间。实验结果表明,基于GA-DPSO的数据放置策略可以有效减少边缘计算和云计算相结合的工作流执行过程中的数据传输时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号