首页> 外文期刊>Concurrency and computation: practice and experience >Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization
【24h】

Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization

机译:使用遗传粒子群优化的移动边缘计算中科学工作流程的有效数据安置

获取原文
获取原文并翻译 | 示例

摘要

Mobile edge computing (MEC) necessitates cost-effective deployment for executing scientific workflows with different tasks and datasets, which provides computing, storage and network control at the network edge. However, the execution of scientific workflows in MEC results in heavy costs of data placement including data transmission and data storage. Although there are solutions for data placement in traditional cloud computing, they cannot effectively respond to the latency-sensitive property of scientific workflows, which leads to the excessive costs of data placement. To cope with this problem, we combine the advantages of MEC and cloud computing and propose a genetic algorithm particle swarm optimization (GAPSO) based method to explore the optimal strategy of data placement for scientific workflows in MEC. First, a unified model of data placement is designed to explore a cost-effective strategy, which considers the different characteristics between MEC and cloud computing as well as the impact of latency constraint on transmission costs. Next, the advantages of genetic algorithm (GA) and particle swarm optimization (PSO) are integrated to optimize the proposed model, which utilities the fast convergence of PSO and the crossover and mutation operations of GA. Simulations using real-world scientific workflows show the effectiveness of the proposed method for reducing data placement costs in MEC.
机译:移动边缘计算(MEC)需要具有不同任务和数据集的科学工作流程的经济高效部署,该数据集提供了网络边缘的计算,存储和网络控制。然而,MEC中的科学工作流程的执行导致数据放置的重费,包括数据传输和数据存储。虽然传统云计算中有数据放置的解决方案,但它们无法有效地响应科学工作流的延迟敏感特性,这导致数据放置的过度成本。为了应对这个问题,我们将MEC和云计算的优势结合起来,提出了一种基于遗传算法粒子群优化(Gapso)的方法,以探讨MEC中科学工作流的数据放置的最佳策略。首先,旨在探讨统一的数据放置模型,探讨了经济高效的策略,它考虑了MEC和云计算之间的不同特征以及延迟约束对传输成本的影响。接下来,集成了遗传算法(GA)和粒子群优化(PSO)的优点,以优化所提出的模型,该模型是PSO的快速收敛以及GA的交叉和突变操作。使用现实世界科学工作流程的模拟显示了提出的方法在MEC中降低数据放置成本的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号