首页> 外文期刊>Industrial Electronics, IEEE Transactions on >Dependency in State Transitions of Wind Turbines—Inference on Model Residuals for State Abstractions
【24h】

Dependency in State Transitions of Wind Turbines—Inference on Model Residuals for State Abstractions

机译:风力涡轮机状态转换中的依存关系-状态抽象模型残差的推论

获取原文
获取原文并翻译 | 示例

摘要

Abstracting turbine states and predicting the transition into failure states ahead of time is important in operation and maintenance of wind turbines. This study presents a method to monitor state transitions of a wind turbine based on the online inference on residuals. In a Bayesian framework, the state transitions are based on a hidden variable relevant for the predictor, namely the information of the current state. Given an underlying predictive model based on a student's t-distribution for the samples and a conditional prior on the state transition, it is shown that state transitions can be abstracted from generated data. Two models are presented: 1) assuming independence and 2) assuming dependence between states. In order to select the right models, machine learning is utilized to update hyperparameters on the conditional probabilities. Comparing fixed to learned hyperparameters points out the impact machine learning concepts have on the predictive performance of the presented models. In conclusion, a study on model residuals is performed to highlight the contribution to wind turbine monitoring. The presented algorithm can consistently detect the state transition under various configurations. Comparing to heuristic interpretations of the residuals, both models can qualitatively inform about the time when a state transition occurs.
机译:在风力涡轮机的运行和维护中,提前提取涡轮机状态并预测到故障状态的过渡非常重要。这项研究提出了一种基于对残差的在线推断来监视风力发电机状态转换的方法。在贝叶斯框架中,状态转换基于与预测变量相关的隐藏变量,即当前状态的信息。给定一个基于样本的学生t分布和状态转移的先验条件的基础预测模型,表明可以从生成的数据中提取状态转移。提出了两个模型:1)假设独立性和2)假设状态之间的依赖性。为了选择正确的模型,利用机器学习来更新条件概率上的超参数。将固定的和学习的超参数进行比较指出了机器学习概念对所提出模型的预测性能的影响。总之,对模型残差进行了研究,以突出对风力涡轮机监测的贡献。所提出的算法可以在各种配置下一致地检测状态转换。与残差的启发式解释相比,这两个模型可以定性地告知状态转换发生的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号