首页> 外文期刊>Image and Vision Computing >Knowledge distillation methods for efficient unsupervised adaptation across multiple domains
【24h】

Knowledge distillation methods for efficient unsupervised adaptation across multiple domains

机译:知识蒸馏方法,用于跨多个域的高效无监督适应

获取原文
获取原文并翻译 | 示例

摘要

Beyond the complexity of CNNs that require training on large annotated datasets, the domain shift between design and operational data has limited the adoption of CNNs in many real-world applications. For instance, in person re-identification, videos are captured over a distributed set of cameras with non-overlapping viewpoints. The shift between the source (e.g. lab setting) and target (e.g. cameras) domains may lead to a significant decline in recognition accuracy. Additionally, state-of-the-art CNNs may not be suitable for such real-time applications given their computational requirements. Although several techniques have recently been proposed to address domain shift problems through unsupervised domain adaptation (UDA), or to accelerate/compress CNNs through knowledge distillation (KD), we seek to simultaneously adapt and compress CNNs to generalize well across multiple target domains. In this paper, we propose a progressive KD approach for unsupervised single target DA (STDA) and multi-target DA (MTDA) of CNNs. Our method for KD-STDA adapts a CNN to a single target domain by distilling from a larger teacher CNN, trained on both target and source domain data in order to maintain its consistency with a common representation. This method is extended to address MTDA problems, where multiple teachers are used to distill multiple target domain knowledge to a common student CNN. A different target domain is assigned to each teacher model for UDA, and they alternatively distill their knowledge to the student model to preserve specificity of each target, instead of directly combining the knowledge from each teacher using fusion methods. Our proposed approach is compared against state-of-the-art methods for compression and STDA of CNNs on the Office31 and ImageClef-DA image classification datasets. It is also compared against stateof-the-art methods for MTDA on Digits, Office31, and OfficeHome. In both settings ? KD-STDA and KD-MTDA ? results indicate that our approach can achieve the highest level of accuracy across target domains, while requiring a comparable or lower CNN complexity. ? 2021 Published by Elsevier B.V.
机译:超出需要在大型注释数据集上培训的CNN的复杂性,设计和操作数据之间的域移位限制了许多现实世界应用中的CNN。例如,在人员重新识别中,通过具有非重叠视点的分布式摄像机集捕获视频。源(例如实验室设置)和目标(例如相机)域之间的偏移可能导致识别准确性的显着下降。另外,鉴于其计算要求,最先进的CNN可能不适用于这种实时应用。尽管最近已经提出了通过无监督域适应(UDA)来解决域移位问题的几种技术,或者通过知识蒸馏(KD)加速/压缩CNN,我们寻求同时调整和压缩CNN横跨多个目标域概括。在本文中,我们提出了一种用于CNN的无监督单个目标DA(STDA)和多目标DA(MTDA)的渐进KD方法。我们的KD-STDA方法通过从较大的教师CNN蒸馏到单个目标域,在目标和源域数据上培训,以便保持其与公共表示的一致性。该方法扩展到地址MTDA问题,其中多个教师用于将多个目标域知识蒸馏到普通学生CNN。将不同的目标域分配给UDA的每个教师模型,并且它们可选地将其知识蒸馏到学生模型以保护每个目标的特异性,而不是使用融合方法直接与每个教师的知识相结合。将我们提出的方法与Office31和ImageCleF -DA图像分类数据集进行了对CNN的压缩和STDA的最新方法。它也与数字,Office31和OfficeHome的MTDA的最新方法进行了比较。在两个设置中? KD-STDA和KD-MTDA?结果表明,我们的方法可以跨靶域达到最高级别的准确性,同时需要相当或更低的CNN复杂性。还是2021由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号