首页> 外文期刊>Image and Vision Computing >Online maximum a posteriori tracking of multiple objects using sequential trajectory prior
【24h】

Online maximum a posteriori tracking of multiple objects using sequential trajectory prior

机译:使用顺序轨迹先验在线最大地跟踪多个对象的后验

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of online multi-object tracking based on the Maximum a Posteriori (MAP) framework. Given the observations up to the current frame, we estimate the optimal object trajectories via two MAP estimation stages: object detection and data association. By introducing the sequential trajectory prior. i.e., the prior information from previous frames about "good" trajectories. into the two MAP stages, the inference of optimal detections is refined and the association correctness between trajectories and detections is enhanced. Furthermore, the sequential trajectory prior allows the two MAP stages to interact with each other in a sequential manner, which jointly optimizes the detections and trajectories to facilitate online multi-object tracking. Compared with existing methods, our approach is able to alleviate the association ambiguity caused by noisy detections and frequent inter-object interactions without using sophisticated association likelihood models. The experiments on publicly available challenging datasets demonstrate that our approach provides superior tracking performance over state-of-the-art algorithms in various complex scenes. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,我们解决了基于最大后验(MAP)框架的在线多对象跟踪问题。给定当前帧的观测值,我们通过两个MAP估计阶段来估计最佳目标轨迹:目标检测和数据关联。通过引入先验的顺序轨迹。即,来自先前帧的关于“良好”轨迹的先验信息。在两个MAP阶段,优化检测的推论,并增强轨迹和检测之间的关联正确性。此外,顺序轨迹先验允许两个MAP阶段以顺序方式彼此交互,这共同优化了检测和轨迹,以促进在线多对象跟踪。与现有方法相比,我们的方法无需使用复杂的关联似然模型,即可缓解由于噪声检测和频繁的对象间交互作用而导致的关联歧义。在公开可用的具有挑战性的数据集上进行的实验表明,在各种复杂场景中,我们的方法提供的跟踪性能优于最新算法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号