首页> 外文期刊>Neurocomputing >Online multiple object tracking via exchanging object context
【24h】

Online multiple object tracking via exchanging object context

机译:通过交换对象上下文进行在线多对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Multiple object tracking is a key problem for many computer vision applications such as video surveillance, advanced driver assistance or animation. Most of existing tracking-by-detection methods are mainly based on object appearances and motions. However, the contextual information around the target has not been fully exploited. In this paper, we pay more attention to the contextual information and propose an Exchanging Object Context (EOC) model, which takes full advantage of the context information. Specifically, we implement an efficient and accurate online multiple object tracking algorithm with a novel affinity measure to associate detections. This measure calculates the similarity between targets and detections with the background smoothness after exchanging the contexts between detections and targets, using a novel color histogram descriptor. We refine the bounding boxes by measuring the context changes. Extensive experimental results on two public benchmarks demonstrate the effectiveness of the proposed tracking method with comparisons to several state-of-the-art trackers. (c) 2018 Elsevier B.V. All rights reserved.
机译:对于许多计算机视觉应用程序,例如视频监视,高级驾驶员辅助或动画,多对象跟踪是一个关键问题。现有的大多数通过检测进行跟踪的方法主要是基于对象的外观和运动。但是,尚未充分利用目标周围的上下文信息。在本文中,我们更加关注上下文信息,并提出了一个交换对象上下文(EOC)模型,该模型充分利用了上下文信息。具体来说,我们实现了一种高效,准确的在线多对象跟踪算法,并采用了一种新颖的关联性度量来关联检测。在使用新颖的颜色直方图描述符交换检测和目标之间的上下文之后,此措施可计算目标和检测之间的相似度以及背景平滑度。我们通过测量上下文变化来优化边界框。通过与两个最新的跟踪器进行比较,在两个公共基准上的大量实验结果证明了所提出的跟踪方法的有效性。 (c)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号