首页> 外文期刊>Image and Vision Computing >Learning non-metric visual similarity for image retrieval
【24h】

Learning non-metric visual similarity for image retrieval

机译:学习非度量视觉相似度以进行图像检索

获取原文
获取原文并翻译 | 示例

摘要

Measuring visual similarity between two or more instances within a data distribution is a fundamental task in image retrieval. Theoretically, non-metric distances are able to generate a more complex and accurate similarity model than metric distances, provided that the non-linear data distribution is precisely captured by the system. In this work, we explore neural networks models for learning a non-metric similarity function for instance search. We argue that non-metric similarity functions based on neural networks can build a better model of human visual perception than standard metric distances. As our proposed similarity function is differentiable, we explore a real end-to-end trainable approach for image retrieval, i.e. we learn the weights from the input image pixels to the final similarity score. Experimental evaluation shows that non-metric similarity networks are able to learn visual similarities between images and improve performance on top of state-of-the-art image representations, boosting results in standard image retrieval datasets with respect standard metric distances. (C) 2019 Elsevier B.V. All rights reserved.
机译:测量数据分布内两个或多个实例之间的视觉相似性是图像检索中的一项基本任务。从理论上讲,只要系统精确地捕获了非线性数据分布,非度量距离就能生成比度量距离更复杂和准确的相似性模型。在这项工作中,我们探索了用于学习实例搜索的非度量相似性函数的神经网络模型。我们认为,与标准度量距离相比,基于神经网络的非度量相似性函数可以建立更好的人类视觉感知模型。由于我们提出的相似度函数是可微的,因此我们探索了一种真正的端到端可训练的图像检索方法,即我们从输入图像像素到最终相似度分数学习权重。实验评估表明,非度量相似度网络能够学习图像之间的视觉相似度,并在最新的图像表示基础上提高性能,从而提高标准图像检索数据集中有关标准度量距离的结果。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号