首页> 外文期刊>Computer vision and image understanding >Combining visual dictionary, kernel-based similarity and learning strategy for image category retrieval
【24h】

Combining visual dictionary, kernel-based similarity and learning strategy for image category retrieval

机译:结合视觉词典,基于核的相似度和学习策略进行图像类别检索

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a search engine architecture, RETIN, aiming at retrieving complex categories in large image databases. For indexing, a scheme based on a two-step quantization process is presented to compute visual codebooks. The similarity between images is represented in a kernel framework. Such a similarity is combined with online learning strategies motivated by recent machine-learning developments such as active learning. Additionally, an offline supervised learning is embedded in the kernel framework, offering a real opportunity to learn semantic categories. Experiments with real scenario carried out from the Corel Photo database demonstrate the efficiency and the relevance of the RETIN strategy and its outstanding performances in comparison to up-to-date strategies.
机译:本文提出了一种搜索引擎架构RETIN,旨在检索大型图像数据库中的复杂类别。为了建立索引,提出了一种基于两步量化过程的方案来计算可视码本。图像之间的相似性在内核框架中表示。这种相似性与最近的机器学习发展(例如主动学习)所激发的在线学习策略结合在一起。此外,在内核框架中嵌入了离线监督学习,这为学习语义类别提供了真正的机会。从Corel Photo数据库进行的真实场景实验证明了RETIN策略与最新策略相比的效率和相关性以及出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号